

Photo: Niko Myller

Proceedings

13th Koli Calling International Conference

on Computing Education research

Koli Calling 2013

November 14 -17, 2013

Koli, Finland

Conference Chairs:
Mikko-Jussi Laakso, University of Turku, Finland
Simon, University of Newcastle, Australia

Sponsored by:

University of Eastern Finland
Aalto University, Finland
University of Turku, Finland
University of Newcastle, Australia

In cooperation with:

ACM/SIGCSE

The Association for Computing Machinery

2 Penn Plaza, Suite 701

New York New York 10121-0701

ACM COPYRIGHT NOTICE. Copyright © 2013 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax
+1 (212) 869-0481, or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last
page, copying is permitted provided that the per-copy fee indicated in the code is

paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, +1-978-750-8400, +1-978-750-4470 (fax).

Notice to Past Authors of ACM-Published Articles

ACM intends to create a complete electronic archive of all articles and/or other
material previously published by ACM. If you have written a work that was

previously published by ACM in any journal or conference proceedings prior to
1978, or any SIG Newsletter at any time, and you do NOT want this work to

appear in the ACM Digital Library, please inform permissions@acm.org, stating
the title of the work, the author(s), and where and when published.

ACM ISBN: 978-1-4503-2482-3

Koli Calling 2013

Foreword

This volume collects together the papers presented and discussed at the 2013 Koli Calling
International Conference on Computing Education Research.

These papers cover a range of different perspectives, approaches and results within a scholarly
approach to computing education research, computing education practice, and computers in
education. This includes methodological, empirical, curricular and tools-oriented interventions and
reflections. The conference accepts empirical and theoretical research papers, system papers, and
discussion papers.

We received 40 paper submissions from researchers in 15 countries. Each submission was double-
blind reviewed by three members of the program committee, and we accepted 20 papers: 13
research papers, three system papers, and four discussion papers. These proceedings include these
20 papers, the abstracts of eight posters presented at the conference, and the abstract of the keynote
address by Matti Lattu, Project Manager of the Matriculation Examination Board of Finland.

Welcome to Koli Calling 2013.

Mikko-Jussi Laakso
Simon

Koli Calling 2013

Program Committee

Moti Ben-Ari Weizmann Institute of Science, Israel
Anders Berglund Uppsala University, Sweden
Valentina Dagienė Vilnius University, Lithuania
Hannu-Matti Järvinen Tampere University of Technology, Finland
Mike Joy University of Warwick, UK
Ville Karavirta Aalto University, Finland
Päivi Kinnunen University of Eastern Finland
Maria Knobelsdorf Carl von Ossietzky Universität Oldenburg, Germany
Ari Korhonen Aalto University, Finland
Mikko-Jussi Laakso University of Turku, Finland
Lauri Malmi Aalto University, Finland
Robert McCartney University of Connecticut, USA
Marian Petre The Open University, UK
Arnold Pears Uppsala University, Sweden
Guido Rößling Darmstadt University of Technology, Germany
Tapio Salakoski University of Turku, Finland
Carsten Schulte Freie Universität Berlin, Germany
Judy Sheard Monash University, Australia
Simon University of Newcastle, Australia
Jarkko Suhonen University of Eastern Finland
Erkki Sutinen University of Eastern Finland
J Ángel Velázquez-Iturbide Universidad Rey Juan Carlos, Spain

Organising Committee

Ilkka Jormanainen University of Eastern Finland
Jarkko Suhonen University of Eastern Finland
Yue Dai University of Eastern Finland
Calkin Suero Montero University of Eastern Finland

Koli Caling 2013 – Table of Contents

Keynote

Transferring the Finnish matriculation examination to IT .. 1
Matti Lattu, project manager, Matriculation Examination Board of Finland

Full papers

The use of code reading in teaching programming ... 3
Teresa Busjahn and Carsten Schulte

Recording and analyzing in-browser programming sessions ... 13
Juha Helminen, Petri Ihantola, and Ville Karavirta

Academic integrity: differences between computing assessments and essays 23
Simon, Beth Cook, Judy Sheard, Angela Carbone, and Chris Johnson

Computer science students making games: a study on skill gaps and requirements 33
Jussi Kasurinen, Saeed Mirzaeifar, and Uolevi Nikula

Alternate reality games for computer science education .. 43
Lasse Hakulinen

How to study programming on mobile touch devices – interactive Python code exercises 51
Petri Ihantola, Juha Helminen, and Ville Karavirta

Getting to know computer science freshmen .. 59
Päivi Kinnunen, Maija Marttila-Kontio, and Erkki Pesonen

Use of concept maps to analyze students' understanding of the I/O subsystem 67
Edurne Larraza-Mendiluze and Nestor Garay-Vitoria

Exploring misconceptions of operating systems in an online course ... 77
Sonia Pamplona, Nelson Medinilla, and Pamela Flores

Tracing quiz set to identify novices’ programming misconceptions .. 87
Takayuki Sekiya and Kazunori Yamaguchi

An easy approach to epistemology and ontology in computing theses .. 97
Matti Tedre and John Pajunen

Analysing computer science students’ teamwork role adoption in an online self-organised
teamwork activity .. 105

Rebecca Vivian, Katrina Falkner, and Nickolas Falkner

A case study of the development of CS teaching assistants and their experiences with
team teaching .. 115

Elizabeth Patitsas

Computer science students’ causal attributions for successful and unsuccessful outcomes
 in programming assignments ... 125

Rebecca Vivian, Katrina Falkner, and Nickolas Falkner

Social media in everyday learning .. 135
Tina Klomsri, Linn Grebäck, and Matti Tedre

Exploiting sentiment analysis to track emotions in students’ learning diaries 145
Myriam Munezero, Calkin Suero Montero, Maxim Mozgovoy, and Erkki Sutinen

Building collaborative quizzes .. 153
Bruno Sampaio, Carmen Morgado, and Fernanda Barbosa

Automated grading and tutoring of SQL statements to improve student learning 161
Carsten Kleiner, Felix Heine, and Christopher Tebbe

Communication patterns in collaborative software engineering courses: a case for
computer-supported collaboration .. 169

Antti Knutas, Jouni Ikonen, and Jari Porras

Pedagogy of 1:1 computing in Colombia: a case study of three rural schools 179
David Silva, Matti Tedre, and Mikko Apiola

Posters

A JavaScript library for visualizing program execution ... 189
Teemu Sirkiä

How do students learn to program in a connected world? .. 191
Jian Shi and Su White

Teaching artificial intelligence using a web-based game server ... 193
Stefan Friese and Kristian Rother

Brain-based programming – a good concept for schools? .. 195
Peter Antonitsch and Barbara Sabitzer

Brain-based teaching in computer science – neurodidactical proposals for effective teaching 197
Barbara Sabitzer, Stefan Pasterk, and Sabrina Elsenbaumer

Computational thinking in CS teaching materials: a pilot study .. 199
Erik Barendsen and Idzard Stoker

Why is big-O analysis hard? ... 201
Miranda Parker and Colleen M. Lewis

An open approach for learning educational data mining .. 203
Ilkka Jormanainen and Erkki Sutinen

Transferring the Finnish Matriculation Examination to IT

Matti Lattu
The Matriculation Examination Board of Finland

P.O.Box 50
FI-00581 Helsinki

+358-295-338 200

matti.lattu@ylippilastutkinto.fi

ABSTRACT

This paper describes the goals and current status of the renewal

project of the Finnish Matriculation Examination project.

Categories and Subject Descriptors

K3.2 [Computers and education]: Computer and Information

Science Education – computer science education

General Terms

Measurement

Keywords

High-stakes testing, electronic examination

1. PAPER-AND-PENCIL TEST
The Matriculation Examination Board of Finland annually

arranges two examinations for students finishing their upper

secondary school. The most popular subjects may have as many as

30,000 simultaneously attending students. The exams take place

in the 450 schools around Finland. The organisation of the exams

(the board) is funded by the government (~33%) and students

(~66%).

Currently the exams are carried out in traditional paper-and-pencil

style. Most questions take the form of small essays while some

utilise multiple-choice questions. The former are evaluated in a

two-phase process where the students’ teachers and the board

censors both review the performance. The multiple-choice

questions are examined by OCR. The students are not allowed to

use any material other than that given with the questions.

2. PROJECT GUIDELINES

The complete process of organising the exam will gradually start

to utilise IT between 2016 and 2019. After the change the

students will draw up their answers using some kind of device –

probably a laptop or a tablet. Due to financial reasons the students

may bring their own devices to the exam. However, we do not

expect the nature of the exam to change in the first years. In other

words, we have to prevent collaboration and access to the

Internet.

The project vision is to arrange the Matriculation Examination

Test with only one paper - the diploma.

New possibilities for exams include new question types, more

material, section/question-specific timing, testing subject-related

ICT skills. Some considerations are:

• Exam for the students: cheap equipment, focus on the

exam and not the IT, equal possibilities for all students

• Exam for the schools: easy setup, easy supervision, easy

to change defective devices

• Project goals: our system – our IPR, use agile methods

(scrum) to minimise risks, open and engaging project

communications

3. SYSTEM ARCHITECTURE

The renewed examination system will contain the following

subsystems:

• A Test System that interacts with the students. The

system must support a variety of question types and

devices while a number of schools have issues with low

bandwidth. We have requirements for availability,

integrity and non-repudiation.

• An Evaluation system carries out the two-step

evaluation process.

• Extranet providing self-service for school

administrators, teachers and students (e.g. exam results,

application processes). This will function as a front-end

for a Document Management System.

• A Central Database, “HAL”, that holds the production

data

• A Data Warehouse or Archive System supporting

system integration and academic research.

• An Identity management system holding the data

concerning the students, teachers and sensors. It works

as the backbone for the other systems (e.g.

authentication, authorisation and digital signing). In

practice this may be part of the Central Database.

The Test Systems are located in the school localities. As the

quality of the internet connections of the schools varies greatly,

the connection is used only to deliver students' identities and

questions. Also the students' responses and log information is

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for third-party components of this work must be honored. For all other

uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

Koli Calling '13, Nov 14-17 2013, Koli, Finland

ACM 978-1-4503-2482-3/13/11.

http://dx.doi.org/10.1145/2526968.2534902

1

retrieved to the Central Database. Offline use should be an option

to make the exam system as robust as possible.

4. SCHEDULE

The first electronic exams will be organised in autumn 2016. The

transition will be carried on in phases where each new exam

introduces electronic testing to new subjects. The first subjects are

German language, Philosophy and Geography. The last subject to

digitalise is mathematics which will change in in spring 2019. The

student can choose between old and new arrangements simply by

scheduling his/her tests accordingly.

5. CURRENT STATUS
The project has produced the initial process and architecture

plans. We are still running the request for information procedure

for the Test Systems and the Document Management Systems.

The tendering processes for these components will start by the end

of 2013. We expect to get the first codelines during the first

quarter of 2014.

The upper secondary schools are both interested in and worried

about the coming exam arrangements. To explore the setup and

procedures with the schools we have built a preliminary test setup,

and a number of workshops will be carried out before the end of

the year.

2

The Use of Code Reading in Teaching Programming

Teresa Busjahn, Carsten Schulte
Department of Computer Science
Freie Universität Berlin, Germany

{busjahn,schulte}@inf.fu-berlin.de

ABSTRACT
Programming is an intertwined process of reading and writ-
ing. So far, computing education research has often focused
on the writing part. This paper takes a further look into the
role of reading source code in learning to program. In order
to complement the findings from literature, we conducted
interviews with programming instructors using the miracle
question, on the role of code reading and comprehension.
The analysis of these interviews describes this role in terms
of the five categories conceptualization, occurrences, and ef-
fects of successful code reading, challenges for learners, as
well as approaches to facilitate code reading. As a result,
we suggest to take a further look into the different reading
processes involved in programming, in order to add to the
knowledge about programming instruction.

Categories and Subject Descriptors
K3.2 [Computers & Education]: Computer and Informa-
tion Science Education—computer science education, infor-
mation systems education.

General Terms
Experimentation, Human Factors.

Keywords
CS Ed Research, Educational Research, Code Comprehen-
sion, Program Comprehension, Code Reading, Teaching Pro-
gramming

1. INTRODUCTION
“In my class, students do not read code - they write code;

which is what they need to learn. It’s best to write, to let
them discover algorithms, not to let them read“, says one
computing educator when hearing about the idea of research
on code reading (CR) in computing education. By CR we do
not mean, that the reader’s eyes merely move over the text.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from Permissions@acm.org. Koli Calling ’13,
November 14 - 17 2013, Koli, Finland Copyright 2013 ACM 978-1-4503-
2482-3/13/11...$15.00. http://dx.doi.org/10.1145/2526968.2526969

It rather denotes the first step in program comprehension,
taking in the written elements and understanding them.

The BRACElet group (see e.g. [31]) is researching the
relationship between ’reading, tracing, and writing’, assum-
ing there are relationships between these skills that explain
parts of the ability to write programs. A causal relationship
between code reading and writing skills would require to fo-
cus on reading and understanding of code before writing it.
Yet, if students can learn to write programs without being
able to read them, it might not be necessary to put so much
effort on that skill [28].

Somewhat differently, Denny, Luxton-Reilly and Simon
(2008) mention that“it is commonly believed that code trac-
ing is easier than code writing, but it seems obvious that
different skills are needed for each” [6], p. 113.

When taking an abstract, theoretical point of view, of
course there’s reading involved in programming, as e.g. a
programmer must be aware of where to write next, must find
bugs in the code, read code to eliminate syntax errors, and
so on. Or, taken this argument somewhat further, before
a person can write a syntactical statement, she would need
to know what or how to write, and therefore have to have
read the statement beforehand. This is the argumentation
behind the work of the Bracelet group. Still - while there
is some connection between reading and writing - it is not
clear whether CR is something that has to be learned (in
the sense that it needs to be carefully taught) or if it maybe
will be picked up effortlessly just while writing. To put it
differently: would there be an impact, some visible difference
between a learner with a higher level of reading skills and
a novice programmer with a lesser level of reading skill?
Would the teacher be aware and adapt teaching? Would
there be problems in writing code? In understanding code
or algorithms? In the speed and accuracy of solving learning
tasks?

We believe that the above briefly outlined discussion to
a certain degree resembles the discussion on learning pro-
gramming in the 1960s and early 70s, when programming
was thought of in terms of the product, the written pro-
gram, and so learning programming was thought of in terms
of learning the words (to write). So in essence, learning pro-
gramming was considered as learning a programming lan-
guage [1]. Now there is a consensus that learning program-
ming is also learning a process.

We can transfer this debate on writing programs in terms
of product or process to the debate on reading programs:
It might be that it is predominantly thought of in terms
of the product like understanding the words written in the

3

text. And so there is presumably an easy to master reading
process, in which the text surface is translated in a mental
model of the program, - and then something else happens
that is focusing on discerning the program execution and
the algorithmic idea embedded in the understanding of the
program.

However, reading the text surface might be also a complex
process in itself.

We believe there are two major aspects involved:
A) While reading and discerning the text surface, not only

some translation of the text surface into an understanding of
the language constructs takes place. Due to limited capac-
ity of working memory, information processing and filtering
already takes place while reading, so that only information
considered as relevant during that moment will be processed
and included in the process of chunking information into
comprehensive forms of elements. So it is much more than
just a translation that takes place in reading. Program read-
ing and program comprehension thus cannot be separated,
but are highly intertwined. In essence, therefore comprehen-
sion problems might be grounded in reading problems.

B) In writing a program it is natural to write several ver-
sions and thus refining the program. During programming
one thinks about ideas and stepwise refines them. That is:
programming is problem solving; and often needs to include
cycles of activities. In such a cycle the programmer needs to
externalize his current ideas and represent them (writing),
so that he then can later on connect different thoughts and
reflect on them (reading). This thinking process needs this
externalization, and therefore needs reading (as those ex-
ternalized thoughts and ideas are really externalized in the
sense of being deleted from working memory, and later being
included again by reading). Thus programming is an inter-
twined process of writing and reading. And so far, in com-
puting education research, and especially in research with
novice programmers and learners, we have focused on writ-
ing, and to some degree neglected the side of reading.

However, while it is obvious that reading has a role and
importance, it is not really clear that it is an educational
problem or an aspect which educators can focus on in order
to support learning.

The question is, would there be an impact or visible change
in the computing classroom, if the learners would be good
readers? Would a teacher recognize a difference and what
kinds of problems in teaching and learning programming
would be solved?

2. ROLE OF CODE READING IN LITERA-
TURE

2.1 Reading is a common activity during pro-
gramming

“Source code is, among other things, a text to be read.”
[23], p. 3.

Reading is a fundamental and extremely common part
of programming. Nevertheless, little is can be found about
how programmers actually read in practice. And program-
mers often take the skill of reading for granted. Reading
code corresponds to other forms of reading, but there are
specifics to it that arise from the code itself. Rooksby, Mar-
tin and Rouncefield (2006) [24] look into reading as done by
professional programmers engaged in software development.

In their study, they observed many situations in which the
programmers read. The authors provide an informal taxon-
omy of some of this reading, which mostly took place at the
screen or in conjunction with working on something at the
screen. The first three occasions were ’writing code’, ’de-
bugging’, and ’writing tests’. However, they also identified
other situations, e.g. ’searching for information on the in-
ternet’, ’reading from textbooks’, and ’documenting’. They
found common patterns of reading code. It is

• occasioned: the circumstances in on-going program-
ming work that make the reading of code the relevant
next action for programmers to undertake can be lo-
cated,

• orderly: the ways of ordering the layout of code were
expected and reproduced,

• analysable: programmers have consistent and expected
ways of making sense of code.

Programmers often read their own code. Programs are usu-
ally developed over an extended period. While writing one
part of the program, previously written parts must be at-
tended to. Debugging provides similar opportunities to read
one’s own code [15].

Programmers often have to maintain software written by
others. Raymond points out, “that reading source code is a
key activity in software maintenance” [23], p. 3. In order
to maintain it, it first has to be understood. Even though
there might be design documents, the code is oftentimes the
sole source for the comprehension of the programs design.
Also, CR is of importance in software review, where the
software product under scrutiny is not executed, like in walk-
throughs. 50 - 70 % of defects can be found that way [30].

“In the years to come, programmers will increasingly value
coding that not only works, but that also can be easily read
and understood. To withstand the test of time, coding must
pass the litmus test of readability.” [29], p. 89. Likewise,
Samaraweera, Shonle & Quarles (2011) observe a focus on
writing in the work on program readability. While many
guidelines exist for composing programs, only few consider
the reader’s expectations. They conducted a survey with
Java programmers on how the structure of a program com-
municates the intentions of the developer. They found that
even refactorings that kept the meaning had a measurable
effect on what readers believed the programmer’s main in-
tention was. One example originally had a long method
with two sections, that were separated by comments. After
these two sections were extracted into clearly named meth-
ods, many readers were lead to an incorrect description [9].
CR in approaches to teaching programming

“In becoming a programmer you learn, amongst other
things, to read code in the way that programmers should,
can and do read code.” [24], p. 210. But, what is the way
that programmers read code? And, do new programmers
learn it? If so, how?

Several studies [18, 31, 16] applying different statistical
approaches found significant relationships between tracing
code, explaining code, and writing code. Nevertheless, it
is not tracing and explaining skills independently, but their
combination, that leads to writing skills. Writing code pro-
vides many opportunities to improve tracing and explana-
tion skills, which in turn helps to improve writing skills. The
skills reinforce each other and develop in parallel. While

4

there is not a strict hierarchy, some minimal competence at
both tracing and explaining precedes some minimal compe-
tence at systematically writing code. However, some aspects
of these assessments results are sensitive to the particular
exam questions used. So, Simon et al. (2009) [28] raise
some concerns with this kind of assessment of reading and
writing skills. Without further ado it is not possible to tell,
whether reading and writing questions are really compara-
ble. The same applies for the marking of points for these
tasks. The distinction between line-by-line understanding
and big-picture understanding does not seem to have a par-
allel in code-writing questions [17].

2.2 Practice examples for using Code Reading
in teaching

Merrienboer and Kramer [20], as well as Selby [27] de-
scribe approaches to teaching programming, that focus on
CR. Based upon a literature search as well as on an investi-
gation of existing courses and programming textbooks, Mer-
rienboer and Krammer (1987) classified three instructional
strategies for the design of introductory computer program-
ming courses in high school. Instructional strategies are
general design plans that mainly differ in their control of
students’ processing load. The Expert approach emphasizes
top-down program design. Novices start with a complex but
intrinsically motivating programming problem. In the Spi-
ral approach syntax and semantic are acquired emphasizing
small incremental steps and building up a program by mas-
tering the basics (language constructs) first. The Reading
approach controls processing load by varying the difficulty
of the students’ task. From the beginning of the course,
students are confronted with program reading assignments
in the form of non-trivial design problems in combination
with their complete or partial solutions. The assigned tasks
gradually become more complex during the course, chang-
ing from using and analyzing programs, through modifying
and extending programs, to designing and coding programs.
It is recommended that students begin by understanding
relatively complex existing programs and then modify and
enhance those programs.

Drawing knowledge from cognitive theory and empirical
research directed towards learning to program, they also
identified six tactics for teaching programming. Tactics are
specific design plans of action that prescribe methods to
reach desired learning outcomes under given circumstances.
They claim, that an effective programming course should
incorporate these tactics. However, some tactics can be ef-
fectively applied in courses of one strategy, others are less
compatible with the strategy. If more strategies are avail-
able and only one is compatible with all tactics, this strategy
is clearly superior. If all tactics get equal weight during the
evaluation of instructional strategies, the Reading approach
surpasses the Expert and Spiral approaches. It is the best
strategy to follow in the instructional design of introductory
programming courses, as it effectively controls the process-
ing load.

Selby [27] identifies four approaches to teaching introduc-
tory programming from literature: code analysis, building
blocks, simple units, and full systems. We will outline code
analysis:

Students read and understand source code, before they
write their own. For that, any programming language, pseu-
docode or even structured English can be used. The code

can be shown on paper or in an appropriate development
environment, but it is not absolutely necessary, that learn-
ers interact with the code in an environment on a computer.
In that case, no tools or environments need to be mastered,
students can work on the programming logic straight away.
If pseudocode is used, learning programming is also inde-
pendent of a specific language. Code analysis allows the
development of skills involved in explaining and debugging,
which forms part of the underlying foundation necessary to
facilitate code writing. In addition, it is possible to expose
learners to the logic behind simple basic algorithms. There
are hints, that especially weaker students profit from this
approach.

However, learners might not like to learn programming
using paper and pencil instead of the computer. Depending
on the learner’s age and capabilities, it can prove to be diffi-
cult to find appropriate pseudocode instructions (e.g. usage
of words or symbols) and the lack of immediate feedback
makes this approach problematic for independent learning.
Also, there is no verification that the identified pseudocode
logic is actually a correct representation of a problem solu-
tion. Furthermore, the understanding of pseudocode might
not lead to skills, that can be applied to the comprehension
of a strict syntax language. Even if students are able to read
and understand a program, the are not necessarily able to
construct that solution themselves.

In their “Guidelines for Teaching Object Orientation with
Java” Kölling and Rosenberg [14] suggest to give students
the chance to read code from others from the beginning on,
since a lot can be learned from well written code and by
copying styles and idioms. They further recommend to use
examples with several classes and a considerable amount
of methods, so students can practice CR, understand the
need for clear code and documentation, etc. Campbell &
Bolker (2002) [3] describe a CS1 course, in which students
learn Java by immersion. The authors compare it to learn-
ing a natural-language by immersing in a foreign country.
Thereby students are supposed to not only learn to think in
objects, but also to learn the conventions that programmers
have developed. So, instead of starting writing programs,
students read programs written by experienced program-
mers, exposing them to good programming practice. Using
some explanation, students can supposedly follow the pro-
gram’s logic and understand enough to make minor mod-
ifications. After all, modifying a well written program is
easier than writing one from scratch. Other benefits of this
approach are that the used programs are closer to the “real
world” and that real design issues can be addressed sooner.
However, the dropout rate did not change compared to pre-
vious CS1 courses.

Hilburn, Towhidnejad & Salamah (2011) adopt the princi-
ple of reading before writing for case studies in software en-
gineering education. They recommend a teaching approach
using Fagan software inspection as an active learning tech-
nique, indicating that students should read and study an
existing software artifact, before developing one themselves.
They claim that software engineering courses with software
development projects are often isolated from the rest of the
curriculum and do not form a real-world basis. Therefore,
though graduates are familiar with the basic theoretical con-
cepts in software development, they are not able to apply
these concepts in real-world environments. By means of
case studies, inspection is applied simultaneously as a profes-

5

sional practice, that students have to learn, and as a tool to
teach about software development. These exercises promote
the understanding of the nature, difficulty, and importance
of requirements. Their technique could be used in different
level courses throughout a computing curriculum and the
inspection cases can be used with almost any artifact in the
software life-cycle [10].

Spinellis argues, that students should also learn what is
readable code, that others can easily decipher. He claims,
that“computer programming education often focuses on how
to single-handedly develop programs from scratch in a single
language and single execution environment, a development
style prevalent in the 1950s and 60s. Nowadays, software de-
velopment is typically a team-based activity and most often
involves extending and maintaining existing systems written
in a multitude of languages for diverse execution environ-
ments. It’s now even more important to understand code
concepts, forms, structures, and idioms to be able to write
code that other programmers can read easily” [29], p. 86.

Deimel (1985) [15] suggests the use of reading questions
in exams as an alternative to writing questions. As advan-
tage, especially of multiple-choice questions, he argues that
they are easier to grade, more objective, and likely to be
more consistent measures of student performance. Deimel
and Naveda (1990) [5] even provide an instructor’s guide for
reading computer programs.

2.3 Code Reading and Program Comprehen-
sion

Reading occurs not only in learning programming, but
also in debugging, and maintenance. It provides the essen-
tial basis for comprehension. The area of program compre-
hension comprises a vast body of literature, with numerous
conflicting models having been proposed [32]. One of the
earlier comprehension models developed by Pennington [21,
22] directly draws on research in reading, as it is based on
the text comprehension model of Kintsch and van Dijk [13].

Models are typically grounded in experimental studies,
mostly involving experienced programmers. The question
of how to relate this material to the teaching and learn-
ing of programming for novices has proven challenging [26].
One obstacle is that comprehension is an internal cognitive
process. In contrast, CR refers to a behavioral process, in
principle open for observation by e.g. eye tracking [2]. The
challenge to tackle is how to make use of this data to infer
higher order comprehension processes.

3. EDUCATORS’ PERSPECTIVES ON CODE
READING

Interviews were conducted using the miracle question, plus
some additional questions. The data gathering was done
individually, to the convenience of the participants. Some
were done via voice-over-IP. For analysis, the interviews were
transcribed and coded. Results are based on this coding pro-
cess.

3.1 Miracle question
“I am going to ask you a rather strange question [pause].

The strange question is this: [pause] Imagine you will do
whatever you need to do the rest of today, such as prepar-
ing dinner and watching TV. Then you go to bed. In the
middle of the night, a miracle happens and the problem

that code reading is difficult for novices is solved! But be-
cause this happens while you are sleeping, you miss the mir-
acle. [pause] So, when you wake up tomorrow morning, what
might be the small change that will make you notice, that
the problem is gone.”

The miracle question comes from solution-focused brief
therapy. Instead of focusing on problems, it is concerned
with the solution. These solutions are developed “by first
eliciting a description of what will be different when the
problem is resolved” [4], p. 2, and then identifying strate-
gies that worked in previous situations in which at least
some characteristics of the described solution were present.
Hardly any time is spend to explore the source of the prob-
lem. When describing the origins of the problem, language is
usually negative and focuses on past-history, furthermore of-
ten the permanence of the problem is implied. However, the
description of solutions, is normally rather positive, hope-
ful, and future-focused, while suggesting a transience of the
problem. By using the miracle question, clients usually for-
mulate smaller and more manageable goals. The reactions
to it can be very different. Nevertheless, given time to think,
they name specific things, that would be different, when the
problem is solved. Their answers often serve as goals of
therapy [4].

Transferring this approach to education can be done by
asking educators the miracle question. Their responses can
lead to a more detailed description of the behavior they
would like their students to show. In turn, this can help
to find their previous solutions and approaches. A possi-
ble variation of the method is to ask the miracle question
to a group of educators and let them work on the miracle
description together, or to ask learners what they want to
know about a topic [8].

We deliberately ask for code reading instead of under-
standing, in order to elicit how much teachers are concerned
with this part of the comprehension process.

3.2 Key questions
Wanting to complement the answers obtained by the mira-

cle question and to get richer data, we prepared a set of ques-
tions for further exploration during the interviews. These
questions were asked after the miracle question.

• Where do you see potential to facilitate code reading?

• Which aspects of code reading do you deem important?

• What do you want to know about code reading?

• What else about code reading comes to your mind?

3.3 Participants
Our aim was to gather some current notions of the role

of CR in learning programming, with a focus on novices.
Our sample size of six interviews is at the lower boundary,
as discussed in qualitative research [19]. Our first aim is to
figure out, if there is a substantial role of CR at all. For
this purpose, the sample size and selection of participants
should be sufficient, as we have chosen experienced teach-
ers who are partly also engaged in the computing education
community. We chose to focus on the school level, as there
are more likely absolute novices, whereas in post-secondary
education the students often already have some experiences
(even though being enrolled in novice classes). Three of the
interviewees are high school teachers from Germany, who in

6

Teaching years Students Experience

1 9 years High School,
University

high

2 9 years High School,
other teachers

high

3 >30 years High School,
other teachers

high

4 4 years High School medium
5 6 years University high
6 6 years High School high

Table 1: Participants

addition to teaching at high school are also lecturing other
teachers or teacher students (10-25% of their time). All of
them have presented or published at conferences in comput-
ing education.

One other teacher was from UK, another from Iran. In
order to get an additional perspective, we also interviewed
one lecturer from a Russian university.

3.4 Procedure of Analysis
Basically, the data was analyzed by coding. Therefore

the transcribed text is labeled, using a code, and the codes
are grouped into categories. Text coding is used in different
qualitative and quantitative approaches, e.g. in grounded
theory methodology (GTM) [12], in phenomenography [7],
and in content analysis [11].

In a way, we used open coding / inductive coding / label-
ing categories of description – the first step in analysis that is
rather common for the above listed approaches. While doing
so, we had the impression that we a) cannot or should not
aim at giving a result that pretends to be complete or fin-
ished (because e.g. we had to few interviews, and there are
too many possible additional perspectives to include). And
b) we found that many of the aspects mentioned could be
captured by using the Block Model (BM) as coding scheme,
or rather as basis of a coding scheme. So we changed our
approach somewhat and by including this theoretical frame-
work added something which resembles deductive coding in
content analysis, or axial coding in GTM. Consequently, we
switched back and forth between inductive and deductive
reasoning. We then discussed the obtained coding scheme
with another experienced CS teacher involved in CSed re-
search, for refinement.1

The BM [25] gives a normative account of dimensions and
levels of understanding source code. It proposes three dis-
tinct dimensions of awareness: text surface, program execu-
tion and the function of the code (’function’ is a somewhat
misleading term in CS, here the term aims at the intention
or purpose of a piece of code). These dimensions are to
be perceived or discerned for chunks of text that get larger
and larger: starting with words or atoms, to blocks, their
relations to the whole text is taken into account (see table
2). The participants often used statements that correspond
to cells in the BM. Therefore the model provides a suitable
frame for coding terms and for grouping perspectives.

Overall, we analyzed the transcribed interviews using a
rather conventional approach to coding, where the coding
scheme was developed while reading and comparing the tran-
scripts. We then used some deductive coding, and grouped

1Thanks to Andreas Gramm for his time and suggestions.

the codes into categories. These categories highlight impor-
tant aspect of the perceived role of CR, and represent our
study results. We believe this result gives valuable insights
for further research – but also that at this point it would not
be of much use to aim at a full theoretical description or a
complete outcome space to present the obtained insights as
some complete understanding of the role of CR in secondary
school.

3.5 Results
In this section we present the results of our analysis. Dur-

ing coding the transcribed interviews, we grouped the codes
to five categories, which are presented in the following sub-
sections.

Within each sub-section the category is described based
on the codes, and supplemented with citations and general
observations made when conducting and analyzing the in-
terviews.

Figure 1 gives an overview of the categories and codes.
The results represent the aggregated understanding of the

selected experts.
Many of the codes were mentioned more than once, and

by more than one participant. The most frequent codes are
highlighted in the figure.

3.5.1 Conceptualization of Code Reading
First we describe the participants personal understanding

and conceptualizations of CR. All participants needed to
think a while before being able to answer. Several times
we heard comments like “hmm”, “difficult question”, “don’t
really know”, when they tried to explain CR or aspects of
CR.

During the interviews, the conceptualization of CR was
gradually enriched. In the end, all levels and dimensions
of the Block model were explicitly mentioned or referred
to. For example, CR was described as following: “Reading
code to me means understanding the syntax [...] If stu-
dents miraculously could read code, they could understand
the syntax, the grammar and the vocabulary” (Interview 6).
The focus was on the text surface: CR was conceptualized
as the process of visually perceiving the source code, and as
prerequisite of program comprehension. CR in this perspec-
tive is focused on ’deciphering’ the words of the language,
and translate them into the meaning of the words. This
is consistent with our questions about reading, rather than
understanding.

Program execution was also frequently mentioned . It was
seen as one major challenge to infer from text to execution.
Here the execution of blocks, and the flow of execution were
focused on. The dimension of function (=intention) was also
mentioned, mostly with focus on understanding the algorith-
mic idea (on the macro level), but also sometimes with focus
on understanding the role of a block.

One participant mentioned that understanding the over-
all intention is a prerequisite for students to being able to
read and understand. Sometimes understanding the inten-
tion was even seen as ultimate goal.

The participants disclosed both the possibility of bottom-
up, and top-down approaches to reading and comprehension.
Overall CR was seen as one step in comprehending a pro-
gram, and rather often means or tools were mentioned to
facilitate understanding (see 3.5.5 Approaches to facilitate
CR for details). Furthermore it was recognized, that reading

7

Text surface Program execution (data flow
and control flow)

Functions (as means or as pur-
pose), goals of the program

Macro
structure

(Understanding the) overall struc-
ture of the program text

Understanding the
”
algorithm“ of

the program
Understanding the goal/ the pur-
pose of the program (in its context)

Relations References between blocks, e.g.:
method calls, object creation, ac-
cessing data

sequence of method calls
”
object

sequence diagrams“
Understanding how subgoals are
related to goals, how function is
achieved by subfunctions

Blocks ’Regions of Interests’ (ROI) that
syntactically or semantically build
a unit

Operation of a block, a method, or
a ROI (as sequence of statements)

Function of a block, maybe seen as
sub-goal Function of a statement.

Atoms Language elements Operation of a statement Goal only understandable in con-
text

Structure Intention

Table 2: Block Model

Figure 1: Code categories

8

source code is different from reading natural-language text,
that it is a skill in itself and that there are strategies for it.

3.5.2 Effects of successful Code Reading
In accordance with the above described general concep-

tualization of CR as prerequisite (or first part) of program
comprehension, the main effect of mastering this prerequisite
is thought of as being able to be faster overall. All tasks re-
lated to CR or relying on successful CR will be done quicker;
for example: “When e.g. students are presented a program
text - what I’m doing frequently in my classes - they would
be able to immediately answer what are the results [return
values] of the presented functions, what kind of algorithm is
in the text, and the would react much faster overall” (inter-
view 1). Successful CR enables student to understand the
programs’ execution and intention.

Other aspects that were mentioned:
Successful CR would change the level of understanding

and reflecting on code. It was assumed that questions and
discussions about code would would have a better quality,
as there wouldn’t be the need to ask questions about the
surface features of the text. Ideally, students would be able
to read the text and then immediately understand the code’s
intention.

In addition, it would allow learners engage more often in
self-dependent learning, e.g learning of new code constructs
through reading code examples.

3.5.3 Challenges for Learners
Understanding the code’s intention from the text surface

was seen as the major challenge in reading. Or rather, it was
considered as some challenge in its own, based on reading the
text and understanding its parts. Some mentioned that such
understanding would only be possible if the reader already
possessed pre-knowledge about the program’s intention.

One respondent describes the following main challenge:
”In order to discern the algorithmic idea I need to combine
the individual steps. As a prerequisite for this I need to
know the programming language, the meaning of its con-
structs [...] It is a synthesis, [...] first I need to analyze:
what is the structure [...] and then I need to synthesize:
what is happening. And [...] to formulate from many small
individual steps something big like this algorithm changes
the order of the strings, or something like that well, I guess
that is abstraction“ (interview 1).

Perceiving the hierarchical block structure of the code, the
’analysis of its structure’, poses another challenge - albeit the
text surface is or might be perceived as a linear sequence of
code elements (atoms).

A further challenge mentioned is the transfer from one
task or example to other problems.

3.5.4 Occurrences of Code Reading
In the classroom, there are several situations were learners

need to read code. The most frequently mentioned exam-
ple refers to reading code of others, e.g. the code of other
learners, or examples presented by the teacher.

In addition, a variety of learning tasks and of diagnostic
tasks (e.g. in exams) include the need to read code. A
prominent example is the task to find out the intention of a
given piece of code.

3.5.5 Approaches to facilitate Code Reading
Our interviewees stated several means to facilitate CR.

They referred to the importance of a suitable programming
language, and a suitable programming environment a lot.
This is not surprising as the language and the IDE are de-
termining the visual layout and features of the text surface.
And, as we have seen in the conceptualization of CR, the
text surface is what CR is concerned with.

Support therefore concentrates on changing the code to
be read. Concrete suggestions often aimed at facilitating the
analysis of structure, e.g. by keeping the code short enough
to fit on one page and by using formatting and visualizations
to highlight the structure.

4. SUMMARY OF RESULTS
In summary, the interviews shed light on different as-

pects of CR. These different aspects seem to form a coherent
whole. Nearly all educators had to think for a while, before
setting to answer the miracle question, as well as some of
the following questions. One possible interpretation is that
CR was not actively thought about and used in their every-
day teaching of programming. However, during answering
our interview partners engaged in reflection about the role
of CR and could perceive different aspects and roles.

The views of the different persons were rather mutually
enriching than contrasting each other. First of all, there
seems to be a consensus that reading is the first part of
comprehension - reading is conceptualized as perceiving the
text. Then participants started to think about comprehen-
sion in terms of execution and intention (algorithmic idea).
Thus reading is merely concerned with identifying and un-
derstanding code concepts on a low level, and on under-
standing the structure or ’outline’ of the text. However dur-
ing the interviews the more cognitive comprehension pro-
cesses were sometimes also included in this initial act of
reading.

Reading was regarded as important, but seldom taught or
used directly. As such, reading is an integral part of learning
programming, and is a common activity in the classroom.
It occurs during e.g. introducing program constructs like
elements of the language or a library / API being used,
during programming (for bug fixing and stepwise refining the
program, so that it shows the desired behavior), in classroom
sessions were code of other learners or examples chosen by
the teacher are discussed. It is also used in examinations or
tests as a special kind of task (find-out questions).

In addition, two of our respondents even thought about
a CR strategy for learners. It was not clear whether this
should be taught, or if it was conceptualized as a general
reading and comprehension process.

One account was this: Reading starts with analyzing the
program’s structure: Reading the blocks and thus perceiv-
ing the structure is the basis for perceiving the programs
flow of execution, and the semantics of the concepts. This
first analytic phase is then followed by a phase of synthesis
and abstraction, were the algorithmic idea is extracted from
this structure. Reading and comprehending is thus rather a
bottom-up process (see also the quote in section 3.5.3).

The other account was this: First the reader has to build
a map of the source code, a kind of orientation and percep-
tion of the semantics. This is needed to be able to navigate
through the text. Then - by navigating - the ’territory’

9

so to speak, can be explored in order to answer more de-
tailed questions or to get a deeper understanding of the text.
This second phase can also be seen - or is included in the
classroom as a kind of interactive experiment, including e.g.
changes of the text, executions with different inputs. Overall
this process needs to be framed by some overarching notion
or idea about the intention of the program. Program reading
and comprehending is thus a rather top-down process.

Overall the attempts to describe reading strategies remain
preliminary; but there are some aspects of reading strategies
that were mentioned by several of the participants:

1. Analysis of the structure of the text surface is impor-
tant. Readers need to be aware of the block structure
of the code.

2. Probably the immediate or first step of program com-
prehension in terms of making inferences is aiming to
comprehend the execution of the program (form text
surface to execution).

3. To find out or comprehend the intention of a program
without additional help is very difficult.

However, CR is rarely (in our interviews only once) seen
explicitly as a learning goal in itself. While it is seen as a
natural part of programming classes, it is rarely -brought up
in terms of an educational challenge. The question remains
whether there is the need or a place for explicitly teach-
ing CR, or if the challenge of CR is best met by choosing
appropriate tools to facilitate reading. Our participants sug-
gest the importance of appropriate languages and program-
ming environments, of strategies or support for surveying
the code, and help for visualizing the block structure.

While the educators do see problems related to reading
and program understanding, they also seem to accept these
problems as natural or given part of the learning process.

5. CONCLUSION
In the literature, as well as in our interviews, we found

many possible uses of CR, and also many aspects of learn-
ing programming where CR is needed. CR is connected
to comprehending programs and algorithms, or algorithmic
ideas, as well as details, like e.g. semantics of constructs.
Additionally there are many possible uses of CR in terms
of tasks based on reading in order to facilitate learning to
program. But at the same time there is not much knowledge
about the reading and comprehension process of learners. If
we knew more about this process, suggestions for learning
tasks could probably be improved.

Another area is the need for reading and comprehending
as part of programming. Again, more knowledge about this
part could lead to improved strategies for teaching program-
ming. A possible means to foster learning is to teach reading
directly, including reading strategies. However, so far, we do
not know much about good reading strategies (neither of ex-
perts, nor of learners).

In addition, in the interviews reading was sometimes seen
as learning goal in itself. One participant connected read-
ing to automated code generation and the increased role
of automatically generated code. Therefore reading should
probably be made more explicit as learning goal in itself.

Despite being an essential part of program comprehension,
code reading is mostly just implicitly reflected in teaching
programming and is worthy of deeper inspection.

6. REFERENCES
[1] Bennedsen, J., and Caspersen, M. E. Revealing

the programming process. In Proceedings of the 36th
SIGCSE technical symposium on Computer science
education (St. Louis, Missouri, USA, 2005), ACM,
pp. 186–190.

[2] Busjahn, T., Schulte, C., and Busjahn, A.
Analysis of code reading to gain more insight in
program comprehension. In Proceedings of the 11th
Koli Calling International Conference on Computing
Education Research (Koli, Finland, 2011), ACM,
pp. 1–9.

[3] Campbell, W., and Bolker, E. Teaching
programming by immersion, reading and writing.
Frontiers in Education, 2002. FIE 2002. 32nd Annual
1 (2002), T4G–23.

[4] de Shazer, S., and Dolan, Y. M. More Than
Miracles: The State of the Art of Solution-Focused
Brief Therapy. Haworth Brief Therapy. Haworth
Press, New York, 2007.

[5] Deimel, L. E., and Naveda, J. F. Reading
computer programs: Instructor’s guide to exercises.
Tech. rep., DTIC Document, 1990.

[6] Denny, P., Luxton-Reilly, A., and Simon, B.
Evaluating a new exam question: Parsons problems.
In Proceeding of the Fourth international Workshop on
Computing Education Research (Sydney, Australia,
2008), ACM, pp. 113–124.

[7] Diehm, R.-A., and Lupton, M. Approaches to
learning information literacy: a phenomenographic
study. The Journal of Academic Librarianship 38, 4
(2012), 217–225.

[8] Diethelm, I., Borowski, C., and Weber, T.
Identifying relevant CS contexts using the miracle
question. In Proceedings of the 10th Koli Calling
International Conference on Computing Education
Research (New York, NY, USA, 2010), Koli Calling
’10, ACM, pp. 74–75.

[9] Gayani Samaraweera. Programming from the
reader’s perspective: Toward an expectations
approach. Macneil Shonle and John Quarles, Eds.,
pp. 211–212.

[10] Hilburn, T. B., Towhidnejad, M., and Salamah,
S. Read before you write. Software Engineering
Education and Training (CSEE&T), 2011 24th
IEEE-CS Conference on, 371–380.

[11] Hsieh, H.-F., and Shannon, S. E. Three approaches
to qualitative content analysis. Qualitative health
research 15, 9 (2005), 1277–1288.

[12] Kinnunen, P., and Simon, B. Building theory about
computing education phenomena: a discussion of
grounded theory. In Proceedings of the 10th Koli
Calling International Conference on Computing
Education Research (2010), ACM, pp. 37–42.

[13] Kintsch, W., and Van Dijk, T. A. Toward a model
of text comprehension and production. Psychological
review 85, 5 (1978), 363. 04521.

[14] Kölling, M., and Rosenberg, J. Guidelines for
teaching object orientation with java. SIGCSE Bull.
33, 3 (2001), 33–36.

[15] Lionel E. Deimel, J. The uses of program reading.
SIGCSE Bull. 17, 2 (1985), 5–14.

10

[16] Lister, R., Fidge, C., and Teague, D. Further
evidence of a relationship between explaining, tracing
and writing skills in introductory programming.
SIGCSE Bull. 41, 3 (2009), 161–165.

[17] Lister, R., Simon, B., Thompson, E., Whalley,
J. L., and Prasad, C. Not seeing the forest for the
trees: novice programmers and the SOLO taxonomy.
SIGCSE Bulletin 38, 3 (2006), 118–122.

[18] Lopez, M., Whalley, J., Robbins, P., and Lister,
R. Relationships between reading, tracing and writing
skills in introductory programming. In Proceeding of
the Fourth international Workshop on Computing
Education Research (Sydney, Australia, 2008), ACM,
pp. 101–112.

[19] Mason, M. Sample size and saturation in PhD
studies using qualitative interviews. In Forum
Qualitative Sozialforschung/Forum: Qualitative Social
Research (2010), vol. 11. 00135.

[20] Merrienboer, J. J. G., and Krammer, H. P. M.
Instructional strategies and tactics for the design of
introductory computer programming courses in high
school. Instructional Science 16, 3 (Sept. 1987),
251–285.

[21] Pennington, N. Comprehension strategies in
programming. In Empirical studies of programmers:
second workshop (1987), Ablex Publishing Corp.,
pp. 100–113. 00338.

[22] Pennington, N. Stimulus structures and mental
representations in expert comprehension of computer
programs. Cognitive psychology 19, 3 (1987), 295–341.
00475.

[23] Raymond, D. R. Reading source code. In Proceedings
of the 1991 conference of the Centre for Advanced
Studies on Collaborative research (Toronto, Ontario,
Canada, 1991), IBM Press, pp. 3–16.

[24] Rooksby, J., Martin, D., and Rouncefield, M.
Reading as part of computer programming. an
ethnomethodological enquiry. In Proceedings of the
18th Workshop of the Psychology of Programming

Interest Group (2006).

[25] Schulte, C. Block model - an educational model of
program comprehension as a tool for a scholarly
approach to teaching. In Proceeding of the Fourth
international Workshop on Computing Education
Research (Sydney, Australia, 2008), ICER ’08, ACM,
pp. 149–160.

[26] Schulte, C., Clear, T., Taherkhani, A.,
Busjahn, T., and Paterson, J. H. An introduction
to program comprehension for computer science
educators. In Proceedings of the 2010 ITiCSE working
group reports (Ankara, Turkey, 2010), ITiCSE-WGR
’10, ACM, pp. 65–86.

[27] Selby, C. Four approaches to teaching programming.
In Learning, Media and Technology: a doctoral
research conference (London, 2011).

[28] Simon, Lopez, M., Sutton, K., and Clear, T.
Surely we must learn to read before we learn to write!
In Proceedings of the Eleventh Australasian
Conference on Computing Education - Volume 95
(Wellington, New Zealand, 2009), Australian
Computer Society, Inc., pp. 165–170.

[29] Spinellis, D. Reading, writing, and code. Queue 1, 7
(2003), 84–89.

[30] Uwano, H., Nakamura, M., Monden, A., and
Matsumoto, K.-i. Exploiting eye movements for
evaluating reviewer’s performance in software review.
IEICE Transactions on Fundamentals of Electronics
Communications and Computer Sciences E90-A, 10
(2007), 2290–2300.

[31] Venables, A., Tan, G., and Lister, R. A closer
look at tracing, explaining and code writing skills in
the novice programmer. In Proceedings of the fifth
international workshop on Computing education
research workshop (Berkeley, CA, USA, 2009), ACM,
pp. 117–128.

[32] von Mayrhauser, A., and Vans, A. M. Program
understanding - a survey. Colorado State University
Computer Science Technical Report CS-94-120 (1994).

11

Recording and Analyzing In-Browser
Programming Sessions

Juha Helminen
∗

, Petri Ihantola, and Ville Karavirta
Department of Computer Science and Engineering

Aalto University
Finland

juha.helminen@aalto.fi, petri.ihantola@aalto.fi, ville@villekaravirta.com

ABSTRACT
In this paper, we report on the analysis of a novel type of
automatically recorded detailed programming session data
collected on a university-level web programming course. We
present a method and an implementation of collecting rich
data on how students learning to program edit and execute
code and explore its use in examining learners’ behavior. The
data collection instrument is an in-browser Python program-
ming environment that integrates an editor, an execution
environment, and an interactive Python console and is used
to deliver programming assignments with automatic feed-
back. Most importantly, the environment records learners’
interaction within it. We have implemented tools for view-
ing these traces and demonstrate their potential in learning
about the programming processes of learners and of ben-
efiting computing education research and the teaching of
programming.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer science education

General Terms
Human Factors

Keywords
Computing Education Research, Computer Science Educa-
tion, Web Based Programming Environment, Programming
Assignment, Programming Session, Python

1. INTRODUCTION
With the onset of MOOCs and the general trend towards

web-based cloud computing, it is important to study which
kinds of programming environments can be implemented in

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Koli Calling ‘13, November 14–17, Koli, Finland
Copyright 2013 ACM 978-1-4503-2482-3/13/11 ...$15.00.
http://dx.doi.org/10.1145/2526968.2526970

this mode of computing and what new opportunities it may
offer in terms of computing education research. A web-based
programming environment has, among others, the advantage
of presenting learners with a common working environment
that can be managed and updated in a rapid and centralized
fashion. In MOOCs, this is one possible approach to creating
a common classroom environment when participants are
geographically dispersed and obviously cannot have access to
shared lab equipment and, in fact, may not even always have
adequate control over the computer they are using for their
studies. Furthermore as we have control over the environment,
we are actually, with relative ease, able to gain access to
how learners work when solving programming assignments.
Indeed, it is interesting and useful to study how and to what
extent this could enable us to examine learners’ working
habits and processes without direct physical intervention
such as human or video observation, in real time, and on
a large scale. It would be valuable to get insight into how
students work, identify struggling students, and give feedback
on their process while discouraging bad practices right as they
are working on the problem. Following this, in our research
we are interested in:

• How to collect accurate data, on a large scale and with
minimal effort, on what students actually do when they
are programming?

• How to use this data to learn, in quantifiable means,
about the difficulties that learners face and the behav-
iors they, for good or bad, exhibit?

In this work, we contribute to answering the questions
listed by

• presenting an implementation of tools for collecting
and viewing detailed data about Python programming
sessions and

• demonstrating their use in analyzing students activities,
such as, examining how they made use of the integrated
interactive console and presenting common exceptions
encountered by students.

2. RELATED WORK
With today’s computing environments it is quite feasible

to keep detailed logs of the interaction in software applica-
tions. In terms of programming environments, this means,
for example, recording how and when the developer edits and
executes code. Indeed, there is growing interest in research
on analyzing automatically recorded programming sessions
as a means of gaining insight into programming processes.

12

Early Work
There exists already a long history of research dating back
to the 80s that has tried to identify the kinds of mistakes
students learning to program are prone to make and how
their time is spent during development activities. Spohrer
and Soloway used an instrumented version of the VAX 750
operating system to record each syntactically correct program
compiled on an introductory Pascal programming course [21,
22]. In an in-depth analysis of the first syntactically correct
programs for each of the around 50 students in 3 different
problems, they concluded that just a few types of bugs ac-
counted for a majority of the mistakes in students’ programs,
the implication for educators being that they can most ef-
fectively improve their students’ performance by changing
instruction to address and eliminate the high-frequency bugs.

Java Compiler Errors
Decades later, Jackson et al. recorded compiler errors during
one semester with their custom-built Java IDE at the US
Military Academy [7]. All errors from the on-site systems were
collected including data from 583 students and 11 faculty
members. They noted similarly that the top ten types of
errors represented over half of the total number collected.
Furthermore, they reported that there was a discrepancy
between the errors they most observed with students and
what faculty had believed to be the most common, thus
adding to the value of this data. An interesting feature was
that any cadet could access a web page with a detailed
analysis of their most common errors.

Ahmadzadeh et al. also collected Java compiler errors,
but with attached timestamps and source code, using an
instrumented version of the Jikes compiler on a CS1 course as
students solved 15 exercises in the JCreator environment [1].
They divided the errors into three categories: syntax errors
dealt with the grammar of the language, semantic errors
with the meaning of the code being inconsistent, e.g. using a
non-static global variable inside a static method, and lexical
errors with unrecognized tokens. They found the distribution
in their data to be 63 % semantic error, 36 % syntax errors,
and 1 % lexical errors. They also noted that only 6 of the
226 distinct semantic errors constituted more than half of
the error occurrences in each unit of exercises dealing with a
single concept. Additionally, they reported a weak negative
correlation between time debugging and the mark achieved in
the online exams1. In another experiment, the students were
given a debugging task2 in the form of a program with both
compiler errors and logical mistakes. On closer inspection
of the recorded compiler error traces, they concluded that
many students with a good understanding of programming3

still do not acquire the skills to debug programs effectively.
Students successful at locating bugs were observed using
print statements or a filtering approach of commenting out
certain lines. They discovered that the majority of good
debuggers are good programmers while less than half of
the good programmers are good debuggers. In summarizing
their work they suggest that because a good portion of good
programmers did not seem to be aware of some bugs, and
thus were unable to debug them, they actually lacked an

1Statistical significance was not discussed.
2Students did not have any high-level debugging tools avail-
able.
3Based on their marks.

understanding of the actual program implementation and
suggest that the ability to read and understand other people’s
code is an important skill and different from writing one’s
own.

BlueJ and Java Compilation Behavior
Jadud has studied novice programmers’ Java compilation
behavior with a more general focus investigating the com-
plete edit-compile cycle of alternating between editing and
compiling a program instead of just the errors [8]. He col-
lected data from 63 students on their first university-level
programming course working on programming assignments
in classroom tutorial sessions. The BlueJ programming en-
vironment was modified to, among other metadata, record
the time, the source code and, the possible compiler error4

at every compile. He presents a frequency distribution of
compiler errors by type which shows that the minority of
different types of compiler errors account for the majority of
errors dealt with by students. Indeed, the 5 most common
errors accounted for 58 % of all errors generated by students.
Furthermore, on closer inspection he notes that the most
common error types are handled in less than 30 seconds and
require adding or removing only a few characters. Overall, it
was common to spend very little time before recompiling after
an error. He reports also that instructors observed students
often recompiling their programs without attempting to fix
or otherwise understand the error they had received. The
data seems to corroborate this incidence of students in some
manner not believing in the error reported to them since for
example 21% of the time for a repeated missing semicolon
error the next error was the exact same error with source
code unchanged5. On considering the students’ behavior as
individuals Jadud notes that the number of compilations in a
single lab session seems to suggest a grouping of students into
typical ones, those who compile more often than others, and
students whose behavior cannot be adequately described by
this one graph. Moreover, some students had compiled up to
almost 60 times in a single one-hour lab session, much more
than their peers, and he had no explanation for this. Finally
Jadud points out that the environment could be modified to
guide students past the common errors observed but cautions
making this a crutch that students would rely on doing the
work for them instead of learning from it.

In another paper, Jadud reports similar observations from
students of several first-year programming courses [9]. Fur-
thermore, the paper reports a case study of a single weaker
student working on one Java assignment in BlueJ. The ses-
sion description illustrates the student struggling with syntax
errors as the compiler errors are somewhat misleading and
cause the student to introduce more and more errors to the
code. He ends up spending a significant amount of time deal-
ing with syntax errors instead of the actual program design
task. During the session, the student goes on to employ a
pattern Jadud calles ”remove the error” where the student
removes or comments out lines in order to remove and possi-
bly locate an error by way of elimination and maybe later
add the code back in. Jadud notes that this strategy was
observed frequently but less commonly led to success and

4BlueJ only provides the student with a single error for a
compilation even if many exist in the code.
5This might also be due to the student just refreshing the
error message that was cleared accidentally as noted by Jadud
in [9].

13

seemed in general to be an indication of being lost and con-
fused. Another common behavioral pattern Jadud describes
is that students will move on from a particularly problematic
piece of code without addressing the issue. Stronger students
will do something else and fix the problem later but weaker
students just tend to introduce more errors. Overall, he notes
that the students exhibited similar behavioral patterns in
struggling with the syntax as described by Perkins et al. in
solving programming problems in general [15].

Indeed, in this early work from the 80s Perkins et al. dis-
cussed some powerful characterizations of the ways how stu-
dents approach solving a programming problem [15]. They
observed young students, high school students learning BA-
SIC and elementary school students learning LOGO, with
an experimenter providing help only when needed in a pro-
gression from general strategic prompts to specific advice.
Where students were unable to proceed quickly, they ob-
served two general behavioral patterns that they classified as
stoppers and movers. Stoppers will simply stop overwhelmed
with the belief that they cannot solve the problem on their
own and show unwillingness to explore it any further, per-
haps immediately moving on to the next one. Movers, on
the other hand, will consistently try one thing after another
without ever really seeming to be stuck. At the far end of
this, extreme movers tend to try new fixes with hardly any
reflection or apparent convergence to a solution, and end up
abandoning promising ideas prematurely or even going in
circles trying the same thing over and over. As Perkins et al.
discuss, the students are in their own way disengaging them-
selves from the task as instead of dealing with their mistakes
and the information this might yield, they avoid them by
constantly moving on. Moreover, they reported that both of
these less optimal behaviors, stoppers and extreme movers,
were common.

Furthermore, they discuss that the students often followed
an approach they call tinkering. Students first write some
code and then end up trying to solve the problem by making
many successive small edits in the hopes of fixing the program.
They describe that tinkerers are movers and with sufficient
tracing of their code, or close tracking as the authors call
it, to localize the problem and some systematicity to avoid
compounding errors, tinkering may lead to success. Indeed,
Perkins et al. associate the effectiveness of tinkering to be
closely related with the extent of tracing students perform
on their code. Often tinkering works poorly because without
sufficient understanding of their program tinkerers may as-
sume that small changes will help when, in fact, a change
in approach is needed. Some students may also allow these
changes to accumulate untested or leave them in place when
they have failed, ultimately, producing an incomprehensible
tangle of code. Informed by these observations, the authors
note that students could be explicitly taught the pitfalls of
tinkering and encouraged in such practices as removing failed
fixes and considering whether a completely different approach
needs to be taken if several tinkers prove unsuccessful.

Going back to Jadud’s work, he has also presented an
HTML-based visualization of programming sessions in terms
of compilation events [9]. The visualization highlights the
types of errors with colour-coding, time spent and number of
characters changed between compilations, and the locations
of the edits and a possible previous compilation error. One
can additionally view the associated source code for each
compilation via a link. Finally, Jadud describes the error

quotient (EQ) that aims to quantify how much a student
struggles in a programming session based on the encountered
compiler errors. Consecutive erroneous compilations add to
the quotient and repeating the same error even more so.
Jadud goes on to report a statistically significant, yet be it
a weak, correlation between a student’s EQ and assignment
and exam grades6. Overall, Jadud notes that his tools and
the EQ allow a teacher to easily view how students are doing
when solving the assignments as opposed to simply looking
at the end result, and plan interventions when appropriate.

In later work Jadud and Henriksen have published a reim-
plementation of the BlueJ data collection infrastructure that
extends the capabilities by also collecting data about when
methods on a class or object are invoked via BlueJ object
diagrams [10]. The framework consists of a BlueJ extension
and a server. Tabanao et al. have used this framework to
collect data on a university CS1 course from a self-selected
group of 143 students over 5 lab exercise sessions [23]. They
found a statistically significant and moderate (R = -0.54)
negative correlation between students’ mean EQ scores and
midterm exam scores. Consistent with earlier results, they
also report similar errors as Jadud and that top ten error
types accounted for 76% of all the compiler errors. In view of
this, they suggest improving the debugging ability of students
by informing them of the common errors encountered by be-
ginning programming students and discussing why they occur
and how to solve them. Continuing on this work with similar
data, Tabanao et al. have also tried to identify characteris-
tics of high-performing and at-risk students [24]. Based on
their midterm exam score students were grouped into high-,
average-, and low-performing, at-risk, students. They found
statistically significant differences between the groups in the
percentage of erroneous compilations (more errors when lower
performance), the occurrence of a few of specific types of com-
mon errors (more occurrences with lower performance), and
the distribution of time spent between compilations (more
time with higher performance). Correlation tests revealed
that there was a statistically significant relationship between
these erroneous compilations, the time between compilations,
and EQ, and the midterm exam score. They also built linear
regression models to predict the midterm exam score where
EQ proved most influential but ultimately the models failed
to accurately place students into the at-risk group.

Rodrigo et al. have also collected similar BlueJ data as
Tabanao et al. and supplemented this with human-observed
affective states [18]. Besides investigating the relationship of
affective states with midterm exam scores they found that
the number of pairs of consecutive erroneous compilations
and those with the same edit location have a statistically sig-
nificant correlation with the scores, albeit a fairly weak. They
failed to build a statistically significant regression model to
predict exam score using compilation data. In continuing this
work, Rodrigo and Baker generated a linear regression model
of a student’s frustration based on the average number of
consecutive compilations with the same edit location, average
number of consecutive pairs with the same error, and the
average time between compilations [17]. They achieved sta-
tistically significant results in predicting a student’s average
level of frustration across all labs but the correlation was
fairly weak. Per-lab frustration could not be predicted in this
way. They envision that if frustration could be identified the

6The dataset only included students’ work in the labs with
no knowledge of how much or how they worked elsewhere.

14

student could receive a message from the system sympathiz-
ing with them and encouraging them to keep trying.

Continuing this line of research, Fenwick et al. have too
collected similar Java compilation data in BlueJ, as in work
discussed above, using their own extension called ClockIt [14].
In a survey about the value of insights that this type of
data may provide, they found that both the large majority
of CS students and faculty perceived it would be helpful
for introductory CS students to know about the types of
compilation errors encountered and how a student’s habits
compare to his or her peers7. A thing of note compared with
much of the other work is that students could also view the
few types of graphs visualizing their own activity through a
web interface. As for observations, the top five errors recorded
were in Jadud’s top six and make up over half of of all the
compiler errors [6]. They also presented similar descriptive
statistics of the time between compilations and diagrams that
seem to indicate that starting early leads to better grade
and that incremental work pays off as well8. As students had
inadvertently copied the event log file or a project without
this history of creating it, they were also able to identify
these as potential occurrences of plagiarism.

In recent work, Utting et al. describe a plan to have a sim-
ilar data collection feature built into future BlueJ versions9

in order to collect data about students’ behaviour on a large
scale as opposed to the previous work dealing with closed-lab
sessions at a single institution [25]. They plan to include
code-edits on a line-by-line basis, compilation events, and
other events such as unit test, debugger, and version control
use. Furthermore, they intend to anonymize and host this
data in an SQL database and allow others access for research
purposes while researchers could still also collect identifiable
data from their own institutes. Overall, they believe that
the large scale will now allow less often used tools like the
debugger and rarer error messages to be studied.

Finally, Retina is a system that not only collects Java code
snapshots at compilations like in the other work discussed
but also makes suggestions to students based on this data
via instant messages [13]. The recommendations are based
on rules such as suggesting the student work in smaller
increments if their rate of errors per compilation is higher
than average, or to seek help if they are spending more time
on the assignment than expected. Retina’s data collection is
implemented as both BlueJ and Eclipse extensions as well
as a modified javac compiler.

Marmoset and Code Snapshots
Spacco et al. have also collected programming session data
but at a finer granularity than compilations [20]. They have
used Marmoset, an automated project snapshot and submis-
sion system that commits snapshots of a student’s code to an
individual CVS repository every time the student saves his or
her work. The automated recording of student’s intermediate
work is implemented with an Eclipse plugin. Using this data

7The survey reporting lacked details such as how large the
sample sizes were.
8These inferences were not subjected to any statistical eval-
uation. A single incremental session was defined as a period
of time where all successive events were less than 60 minutes
apart.
9Version 3.1.0 that now includes the data collection features
appears to have been published in June 2013 at http://www.
bluej.org/.

source, they investigated the accuracy of their bug detectors
that use static analysis but, pertaining to this work, they
found the CVS-based representation inadequate for explor-
ing this type of data and present the design of a relational
database schema for storing it, thus allowing SQL queries on
it. The schema is built around the idea of tracking individual
lines across the different versions of the code in a file as it
evolves. Lines in successive versions of the code are regarded
equivalent, i.e. modified instances of the same tracked line,
on the basis of ignoring changes in whitespace and comments
and the lines having only a small edit distance and the same
relative location10. The results of unit tests and static anal-
yses are also included with each snapshot in the database.
Mierle et al. have also investigated students’ code from CVS
repositories and implemented a system for storing this data
in an SQL database [12]. Furthermore, they attempted to
find features that would correlate with final course grades
but were unable to find any strong predictors.

In a very recent continuation of the Marmoset work, Spacco
et al. report on a dataset collected in a CS2 course consisting
of submissions to 6 assignments by 96 students [19]. They
visualized the distribution of snapshots against the time of
day and found that their students most preferred to work
around 4 to 6 pm. Additionally, they visualized the number of
snapshots being produced relative to the deadline and found
that the majority of work was being done 48 hours before
the deadline. Furthermore, they tested for linear regression
between the time of the first snapshot and the final score
in an assignment. They report that starting early correlates
with better scores11. Using a heuristic of counting any time
between snapshots whose difference in time was less than
20 minutes into a total time of actively working on the
assignment, they also found that this time spent coding
had a relationship with the final score of an assignment12.
Something of note too is that they used a submission scheme
where the amount of more detailed feedback was limited
within a period of time in an attempt to get students working
earlier before the deadline and discourage procrastination.

In other very recent work, Balzuweit and Spacco have
discussed a prototype web service for visualizing snapshot
data like the one Marmoset records [3]. They have reduced the
data points into tuples of an identifier, a timestamp, a score,
and a label (e.g. an error message), and show a visualization
of a student’s activity with regard to date (x-axis) and time
of day (y-axis) where each data point is additionally colored
according to its correctness as per unit tests. They hope to
start work on developing standard data formats for storing
and analyzing this type of data.

Web-CAT and Submission Data
Web-CAT is another automated grading system that has been
made use of in examining students’ progress and behavior in
programming assignments. In using Web-CAT students are
usually allowed to submit their work for assessment an unlim-
ited number of times before the deadline. Edwards et al. have

10The method for computing the edit distance or the threshold
of small are not specified.

11The test was statistically significant but the strength of as-
sociation was very weak (F (1, 499) = 49.94, p < 0.001, R2 =
0.09).

12The test was statistically significant but the strength of
association was very weak(F (1, 492) = 6.3, p < 0.05, R2 =
0.01).

15

examined five years of programming assignment submission
data from their first three programming courses [4]. They
partitioned each sequence of submissions to an assignment by
a student to two groups, to sequences that resulted in a score
above or below 80 % of maximum. Compared with other
work, in order to provide greater confidence that the cause
of differences in scores has to do with differences in student
behavior, rather than some innate ability that particular
students possess, they then went on to remove all students
from the data that consistently placed in either of the groups.
They were then left with 633 students. In analyzing this data,
they were able to find statistically significant results sug-
gesting that when students received scores placing them in
the high-performing group, they started earlier and finished
earlier than on assignments where they received lower scores.
They did not appear to spend any more time on their work.
Also, around two thirds of the higher scores were received
by individuals who started more than a day in advance of
the deadline, while around two thirds of the lower scores
were received by individuals who started on the last day or
later. They suggest a possible explanation to be that when
students start earlier, they simply have more opportunities
to get help and then go on to perform better.

In other recent work, analyzing a similar large dataset
from their locally developed Web Submissions System and
data ranging from introductory to advanced assignment work,
Falkner and Falkner investigated the relationship of the timeli-
ness of submissions to students’ later timeliness of assignment
submissions and their average grade from courses [5]. They
define a measure of average timeliness that is the average
across all assignments where each is either scored 1 for the
final submission being on time, i.e. before the deadline, or -1
for being late13. Partitioning students into two groups based
on their first assignment submission – on time or late – they
found that students who submit their first piece of work late
seem more at risk of submitting late for the rest of their
career and that this behavior also seems to correlate with the
grades14. They suggest that with the reasonable assumption
of a late submission leading to reduced marks or cascading
lateness, the timeliness of the final submission of the first
assignment can provide an indicator of the future likelihood
of under performing and thus allow some resources to be
assigned for early intervention.

Data Mining and Hidden Markov Models
Taking a very different analysis approach, Allevato and Ed-
wards have also applied the data mining technique of frequent
episode mining to discover frequently occurring patterns in
Web-CAT submissions [2]. Data from two assignments by 102
students taking a C++ course after two semesters of learning
Java was codified into a time series of events, such as, the
student made his or her first submission or first submission
that compiled without errors, the number of methods in the
code changed, or the cyclomatic complexity changed. In com-
paring the frequent episodes of events between the students
that scored well and those who scored poorly, they found
that the weaker students had a frequent pattern of removing
entire methods from their code which the other group did
not have. They suggest this to be due to deficiencies not
only in the students implementation but also in their design

13Late submissions were allowed but these could not receive
the maximum score.

14No statistical analyses were performed.

which can be more difficult to resolve. Additionally, they
compared the frequent episodes occurring early in the course,
in the first assignment, and late in the course, in the final
assignment, in order to see if they might see some changes
but were unable to find indication of a change in habits.

In other recent work, Piech et al. have also used data min-
ing and machine learning techniques to analyze programming
session data [16]. They recorded the compilation events in
Eclipse on their CS1 course from a self-selected group of stu-
dents. A Karel the Robot assignment using a Karel language
based on Java was analyzed more closely. They clustered
the many states of code into more high-level milestones us-
ing a metric based on differences in the AST and the API
calls of the programs and using these modeled each student’s
development path using a Hidden Markov Model. They fur-
ther clustered the individual students’ HMMs to create a
graphical state machine model of the few different high-level
development paths students undertook to solve the assign-
ment. Finally, they showed that the resulting different paths
correlated with students’ performance and with more power
than the score achieved in the assignment. They also report
testing the approach on a more complex Java assignment,
thus proving its general applicability.

Another line of research that makes use of Hidden Markov
Models in capturing the development behavior of students is
the work by Kiesmüller et al. [11]. They have studied students’
problem solving strategies in the finite state machine -based
visual microworld programming environment Kara. Using log
data from the system they have implemented an application
that is able to recognize four different types of problem solving
strategies automatically in real-time.

Summary
There is a steadily growing body of research on investigating
learners’ programming patterns and behavior from different
kinds of automatically captured log data. Previous work has
investigated data at many different granularities ranging from
snapshots recorded every time the student saves his or her
work as in Marmoset and data collected at every compilation
as in the many studies surrounding BlueJ, to the submissions
of automated grading systems such as Web-CAT. Data col-
lection at the finer granularities has been implemented into
modified versions of compilers or as extensions to IDEs such
as BlueJ and Eclipse. The great majority of this work has
focused on Java. Analyses of this type of data have tried to
quantify the occurrences of compiler errors, attempted to dis-
till activity data into usable indicators for high or poor future
performance, as well as, tried to identify some higher-level
behavioral patterns. To mention few of the results that seem
to be gaining evidence from several sources, it seems that
a minority of top types of errors accounts for the majority
of the errors students learning to program encounter, con-
secutive erroneous compilations may be a sign of a student
struggling, and starting work on assignments early will on
average lead to better performance while a lot of the students’
work still takes place only close to the deadline. Recent work
has applied data mining and machine learning techniques
to successfully discover knowledge about students behavior.
Overall, the work has been motivated by a need for both
discovering early actionable indicators of students struggling
that would allow intervention and a desire to test and quan-
tify anecdotal beliefs such as that starting work early and
small incremental work will lead to better performance and

16

common types of errors students struggle with. Following
the findings, there have been suggestions to explicitly teach
students about observed difficulties and behavioral patterns
that seem less desirable but only a few have implemented
such feedback mechanisms of presenting observations on a
student’s behavior back to them.

With regard to this work, we are not aware of any previous
work, besides that upcoming with the new version of BlueJ,
that has collected data at the fine granularity of edits that
we have, or included interactive console use. Indeed, Jadud
has pointed out as possible future work instrumenting the
programming environment further to find out what students
do when their program is syntactically correct in order to ”lift
us out of the purely syntactic view of programming that we
have” [9]. Similarly, Rodrigo et al. have mentioned as possible
future work to attempt developing a finer-grained detector
for frustration and other affective states, using more detailed
data, such as keystrokes and mouse movements, as well as
the coarse-grained compilation data already utilized [17]. In
discussing the BlueJ data collection initiative and opting
to collect quite detailed data, Utting et al. noted that an
important decision is the selection of the data to be cap-
tured because that will determine the nature of the research
questions that may later be investigated using this data [25].
Finally, our work deals with Python and we are not aware of
any previous frequency analyses of Python exceptions during
programming sessions.

3. DATA COLLECTION

Assignments and Learners
We collected data from a 5 ECTS Web Software Development
course in Fall 2012 at Aalto University. The data analyzed
in this study is from a compulsory exercise round on Python.
The round had one multiple choice questionnaire on syntax
and execution and three small programming assignments.

All the assignments could be submitted an unlimited num-
ber of times. If the student got full points in the multiple
choice questions, then completing only two of the program-
ming assignments was enough to pass the round and there
was no reward for extra points. Almost all students who
attempted the programming assignments managed to solve
them. Indeed, 150, 149, and 128 students solved the assign-
ments 1, 2, and 3, respectively. All the assignments were
graded to give either zero or full points.

The backgrounds of the students varied greatly. About half
of the students were master’s or bachelor’s level CS majors
and the rest were from various other engineering disciplines.
Whereas some had previous experience with both Python
and web programming, some had only little programming
experience in general.

Method and Tool
The programming assignments were delivered via a newly
implemented web-based programming environment shown
in Figure 1. The environment was integrated to the learning
management system used on the course. On the left there
is the code editor. It is a fully web-based programming ed-
itor that uses the CodeMirror library15. It provides all the
functionality of a basic text editor such as cut-copy-pasting.
In addition, it does syntax highlighting and has support for

15http://codemirror.net/

smart indentation that reduces the amount of required typing
by, for example, automatically moving the caret to match
the indentation of the previous line when entering a newline.
On the right there is a console area that provides a fully
functional interactive Python console including a command
history feature. The console interface uses the jqconsole li-
brary16. The divider between the two areas can be dragged
to assign more space to either of them. The buttons on the
left provide functionality for running the code in the edi-
tor, submitting it for assessment and feedback, switching to
fullscreen mode, and reloading the template code of the as-
signment. When the code is run, any output or errors of the
execution are shown in the console. Also, the console shares
the same Python execution environment, so after running the
code in the editor, its functions and classes can be accessed –
and most importantly interactively tested – in the console.
The buttons on the right provide functionality for clearing
the console, terminating execution, and resetting the Python
environment. The programming environment had never been
used on a course before and, thus, none of the students had
any previous experience with it.

Python code execution in the environment is done on the
client-side, in-browser and is accomplished using the jsrepl
library17 and the C implementation of Python, CPython,
compiled into JavaScript via LLVM18 using the emscripten
library19. HTML5 web storage feature20 is used to save and
restore the contents of the editor and console including com-
mand history of a programming session. HTML5 fullscreen
API21 is used for enabling the environment to occupy the
whole screen space not unlike a native application.

The feedback consisted of the execution of unit tests whose
code, expected results, and student’s program’s results were
shown. Students passed the assignment when all the tests
passed. Figure 1 shows a reproduced snapshot of a student’s
use of the environment. On the left, the student has written
a program that tries to meet the requirements in assignment
2 as described in the previous section. From the console we
see that the student has executed the program and then
entered a few commands in the console to test and confirm
that it functions correctly. Then the student has submitted
the solution and received as feedback a description of a failed
test.

In this study, the web-based programming environment
was used to record a detailed trace of the students’ work.
Students were not, however, required to use the environment
to create the solution, only to submit using it, but when they
did, their development activities were logged. This includes
all code edits, running the code in the editor, command
executions in the console, or submitting and the outcomes
of all these. Additionally, using the Page Visibility API22

and the web document’s focus events, the trace tries to
include data on when the student exited from and returned
to the environment. Overall, this approach of a web-based
programming environment that integrates the editor and the
execution environment allows us in a relatively simple manner

16https://github.com/replit/jq-console
17http://replit.github.io/jsrepl/
18http://llvm.org/
19https://github.com/kripken/emscripten/wiki
20http://www.w3.org/TR/webstorage/
21http://www.w3.org/TR/fullscreen/
22http://www.w3.org/TR/page-visibility/

17

Figure 1: The in-browser Python programming environment used in the assignments.

to collect rich data on students’ programming processes. In
fact, it provides a rather novel data source on students’ testing
sessions in the interactive console.

4. ANALYSIS AND RESULTS
The traces include a lot of data to process. To support

the analysis, we implemented a web-based tool that allows
us to explore the traces as they are recorded in the system.
Processing of the traces is not done post-hoc but reports are
immediately available for any new trace transmitted to the
server. Figure 2 shows one of the views. This one focuses
on what the code looks like when it is run or when the
student pauses for a longer period of time after editing it –
10 seconds was the threshold value here. Other views include
ones focusing on students’ use of the console, students’ use
of the RUN button – similar to tracking compilations as in
much of the previous work by others – students’ edits of the
code in detailed steps, and summary statistics of all students’
traces in an assignment.

Testing Patterns
In perusing through the logs of programming sessions we
observed two obvious main approaches to testing. Students
would either attach test code at the end of their program and
run it each time they ran their code or just run their program
as is and then exercise its functionality from the console. The
latter kind of data has rarely been analyzed before. Thus, we
focused our investigative efforts on this and went through the
console interaction in all the traces for assignments 2 and 3.
The first assignment was left out of the analysis because there
initially was an error in the assignment and it was modified
mid-course. Also, you have to keep in mind that while we
analyzed all the traces, similar to much of the previous work
with students opting in to submit their data, our view is not
complete because some of the students did also to varying
extents work on their solution outside the web environment.

A great majority of the testing focused on the test cases

given in the description of the assignments. Some students
did nevertheless use test cases they had come up on their
own. In an attempt to exclude such cases where the use of
their own test input was not intentional but, for example,
a typo, we only included in this category cases where the
student had repeatedly used their own test cases (more than
once). After submitting but failing to pass (which happened
rarely) students would move on to using the test where their
code failed during assessment. Finally, about a third of the
students did not enter a single command to the console. More
detailed statistics on the types of test cases used are found in
Table 1. Each individual student’s console testing behavior
between assignments 2 and 3 was quite consistent in that
they almost always exhibited the same patterns in the two
assignments. In assignment 3, the test cases used to test
students’ solutions and give points were exactly the same as
those given in the description of the problem. However, some
students did much more thorough testing on their own in
the console. An example of such a console session is shown
in Figure 3.

Table 1: Students’ use of the console for testing. The three latter
categories are not mutually exclusive.

Assign. 2 Assign. 3

Did not use 49 (32%) 52 (34%)
All the test from the assignment 82 (53%) 74 (48%)
All the tests from feedback 8 (5%) - (-)
Own tests 26 (17%) 19 (12%)

In addition to examining how their program functions,
some students would also use the console for more general
exploration of language constructs and features before in-
corporating related code to their solution. In assignment 2,
many students tried out the mathematical functions sqrt

and pow that were needed in the assignment. An example of
such behavior is shown in the console session in Figure 4. In

18

Figure 2: The view in the analysis tool showing a condensed reproduction of a student’s programming session. Time progresses downwards
and on the left we see the new versions of the code and on the right the previous state of it. In this line-based difference visualization,
green lines signify additions (on the left) and red lines are deletions (on the right).

Figure 3: Example of a student’s console session of thorough
testing.

total 15 students (10%) were found having done this kind of
exploration.

Figure 4: Example of a student console session exploring math.

In assignment 3, it was typical for students to explore
functionality of Python lists. An example is shown in Figure 5.
A total of 19 students (12%) tested list functionality in the
console. Furthermore, many (11) students tried the built-in
function sorted which returns a sorted clone of a given list.

Execution Errors
The number of errors in students’ executions in both running
the code in the editor and running commands in the console
are summarized in Table 2. As can be seen, the most common
error depends on the type of the assignment. In assignment 1,
there are much more indentation errors than in the later
assignments. We assume this to be explained by students not
being familiar with Python. Still, syntax errors along with
indentation errors that may be regarded as such too were
quite common overall even though Python is often praised
for its relatively simple and readable syntax.

In assignment 2, the high number of NameErrors is mostly
explained by students trying to call sqrt function from math

Figure 5: Example of a student’s console session of exploring the
functionality of Python lists.

Table 2: Types of errors in students’ code in the assignments.

Error Assign. 1 Assign. 2 Assign. 3

SyntaxError 394 (35%) 195 (17%) 202 (23%)
NameError 274 (24%) 484 (42%) 218 (25%)
IndentationError 173 (15%) 66 (6%) 62 (7%)
TypeError 141 (12%) 252 (22%) 223 (25%)
AttributeError 66 (6%) 135 (12%) 118 (13%)
IndexError 40 (4%) 1 (0%) 25 (3%)
UnboundLocalError 26 (2%) 1 (0%) 15 (2%)
ValueError 21 (2%) 9 (1%) 0 (0%)
ImportError 0 (0%) 15 (1%) 3 (0%)
Other 1 (0%) 7 (1%) 12 (1%)

package without properly importing it. Furthermore, a lot
of the TypeErrors stem from students not knowing how to
specify arguments when defining functions of a class. Miss-
ing self argument in the function definition was a typical
mistake, which resulted in TypeError as the number of ar-
guments does not match what is defined. In Python, the
self argument is implicitly passed when calling an instance
function, but needs to be explicitly specified in the method
signature.

In assignment 3, the most common TypeError was caused
by overwriting the built-in sorted function by assigning an

19

object into a variable with the same name, and then trying to
use the sorted function in the code. This error was, however,
probably mostly our fault, as the example test cases initially
used sorted as a variable name.

Students’ Perceptions
The web-based programming environment had not been used
on a course before. In order to gauge students’ attitudes
towards this kind of web environment and get some measure
of how large a portion of students’ development activities the
recorded traces include, we issued a short web questionnaire
to the students. Students were given some points on the
course for answering it. The students were asked whether
they had used any other applications in editing and running
code when solving the assignments, what was good and what
was bad about the environment, and finally whether it should
be used on the course in the future. 116 students filled the
questionnaire. As 151 students submitted assignment 1, this
gives a response rate of around 77 %.

A little less than half of the respondents (44 %) reported
having only used the web environment for editing or execution,
about a fifth had sometimes used other tools, and about a
third reported having edited and run code elsewhere often
or almost always. The most commonly reported choices were
Eclipse IDE23 and Notepad++24 for editing, and command
line Python interpreter and Eclipse with PyDev25 extension
for running. Still, relatively few had used any integrated
development environments and apparently done without more
advanced tools like visual debuggers. A great majority of the
students, 79 %, mostly or strongly agreed with the statement
that the web-based programming environment should be
used in the course assignments in the future (mostly 35 %,
strongly 44 %). Overall, students thus seem to have generally
felt positively about the system.

On closer inspection of this data, we found no correlation
between the use of our tool and students’ performance on
the course. For the students who answered the questionnaire,
we compared their reported use of the in-browser editor and
execution environment to their final grade (i.e. exercise +
exam + project work in groups of three), sum of points
from all exercises, the sum of points from Python exercises
divided by the number of submissions per student (i.e. average
points), and finally the number of resubmissions needed for
the Python multiple choice questions. In the corresponding
eight cases, the Spearman’s rank correlation was low (ρ < 0.2)
and not significant (p > 0.05).

103 students left feedback in the two free text questions
about the pros and cons of the environment. We went through
all the feedback and placed the comments into categories of
common themes that emerged. 32 students gave general posi-
tive comments about the system with opinions ranging from
“worked as intended” to “I can’t think of anything that was
bad about the environment. I think the web-based program-
ming environment was brilliant!”. About as many students
mentioned the lack of setup as a specific advantage of the
environment going as far as saying that “This made Python
really look very simple and fun”. 25 students commented on
the user interface being clear and easy to use. Quite a few

23http://www.eclipse.org/
24http://notepad-plus-plus.org/
25http://pydev.org/

students also responded having liked how editing, executing,
and submitting code was so conveniently integrated.

The most common complaint dealt with being used to a
different programming environment which was mentioned by
28 students. Another common issue had been the editor and
the interface in general being too small when integrated to
the learning management system used on the course. The
system could however still be switched to a fullscreen mode
but students found this feature lacking and inconvenient
because in the Firefox browser after switching to another
window the mode would have to be reactivated again and
again (but not in Google Chrome). On the other hand, it
would also appear that not all students realized that the
divider’s position between the editor and console was ad-
justable. Quite a few students (16) also mentioned about
the environment being “a bit sluggish” or “laggy”. Indeed,
the in-browser Python execution environment is noticeably
slower than running a natively compiled Python interpreter
directly in your operating system instead of the browser.
Furthermore, some students missed having an explicit way of
saving their code and mentioned even having been afraid of
losing their progress if accidentally closing their browser. This
would not have been the case unless browser’s web storage
had specifically been disabled. However, there was no clear
mention of this feature being there. To mention just one of
the less frequent issues, a few students did not like the color
theme of having a black background.

5. DISCUSSION
Overall, students used automatic feedback rather sparingly

and preferred to test their code themselves. This is rather
surprising because the previous experience is that an unlim-
ited availability of automatic feedback tends to encourage
some trial-and-error behavior using the automatic system as
a tester. Most of the testing was still based on code given in
the assignment. Still, it is interesting that so many students
used the console in their testing. It is difficult to say whether
the availability of the console as an integral part of the system
had an effect on students’ willingness to exercise their code
before submitting but this may very well be the case. On
the other hand, it could be that just the availability of the
test cases in the descriptions of the problems was the sole
underlying factor in the students’ behavior. Maybe it would
be beneficial to provide students with some tests in the first
few programming assignments and then omit the tests with
the assumption that then they would have got used to the
idea and would be more likely to continue testing their code
but now with tests they have designed on their own.

The group of students who did not use the console may not
have benefited much from our browser-based environment.
The answers to the feedback questionnaire also revealed that
students used a wide range of editors and environments to
write and execute their code. This could be at least partially
explained by the course being intended for 3rd year students.
Especially computer science students are likely to have their
favorite code editor and execution environment selected by
the time they take this course. Novice students might benefit
from this kind of environment more. Indeed, many of the
free text answers in the feedback highlighted the ease of the
environment due to not needing to install any tools.

The web-based programming environment had never be-
fore been used on a course and it still lacked some features
that some students would have liked. Its interface did confuse

20

some too. For example, we could infer from the traces that
there were occasions where students expected the interpreter
to function differently. How it did work is that whenever a
student would run their code, the Python environment was
first cleared and then the new code was evaluated and a mes-
sage saying “Initializing Python environment” would inform
about this too. However, it appears some students expected
that if they had, for example, executed an assignment in the
console that this definition would stick and they could make
use of it across different runs. It could of course work like this
but we felt that this would too easily lead to hard-to-interpret
errors resulting from some old definitions that stuck in the
execution environment. As another example, some students
had often copied their code in the editor and then pasted
it into the console in order to evaluate it into the Python
environment. However, they could have just as well clicked
the run-button above the editor since the console shares the
same execution environment.

6. CONCLUSIONS
In this paper, we have reviewed and investigated the col-

lection and use of programming session data in supporting
educational research about programming. We have presented
a web-based Python programming environment that inte-
grates an editor, an execution environment, and an interactive
Python console. The environment includes functionality for
collecting and analyzing fine-grained data on how learners
edit and execute code when solving programming assign-
ments. We used the tool to examine traces of university
students solving three tasks assigned as part of coursework.
We reported some observations from this data, such as, how
students used automatic feedback rather sparingly and made
active use of the console for both testing their code and,
less frequently, for exploring language features and libraries.
Our results also confirm the findings of previous work that
a minority of error types account for the majority of error
occurrences. As a method to both replicate and extend the
many previous studies dealing with more coarse-grained data,
the programming environment and the access to and views
of the traces can help propel future research into students’
difficulties in programming assignments. Ultimately, added
understanding of how the traces reflect students’ progress
and difficulties could enable us to provide automatic feedback
and guidance based on students’ observed behavior in the
environment.

7. REFERENCES
[1] M. Ahmadzadeh, D. Elliman, and C. Higgins. An Analysis of

Patterns of Debugging among Novice Computer Science
Students. ACM SIGCSE Bulletin, 37(3):84–88, 2005.

[2] A. Allevato and S. H. Edwards. Discovering Patterns in
Student Activity on Programming Assignments. In 2010 ASEE
Southeastern Section Annual Conference and Meeting, 2010.

[3] E. Balzuweit and J. Spacco. SnapViz: Visualizing Programming
Assignment Snapshots. In Proceedings of the 18th ACM
conference on Innovation and technology in computer science
education, pages 350–350, 2013.

[4] S. H. Edwards, J. Snyder, M. A. Pérez-Quiñones, A. Allevato,
D. Kim, and B. Tretola. Comparing Effective and Ineffective
Behaviors of Student Programmers. In Proceedings of the fifth
international workshop on Computing education research
workshop, pages 3–14, 2009.

[5] N. J. Falkner and K. E. Falkner. A Fast Measure for Identifying
At-Risk Students in Computer Science. In Proceedings of the
ninth annual international conference on International
computing education research, pages 55–62, 2012.

[6] J. Fenwick Jr., C. Norris, F. Barry, J. Rountree, C. Spicer, and
S. Cheek. Another Look at the Behaviors of Novice
Programmers. In Proceedings of the 40th ACM Technical
Symposium on Computer Science Education, pages 296–300,
2009.

[7] J. Jackson, M. Cobb, and C. Carver. Identifying Top Java
Errors for Novice Programmers. In Proceedings of the 35th
Annual Conference on Frontiers in Education, 2005.

[8] M. Jadud. A First Look at Novice Compilation Behaviour
Using BlueJ. Computer Science Education, 15(1):25–40, 2005.

[9] M. Jadud. Methods and Tools for Exploring Novice
Compilation Behaviour. In Proceedings of the Second
International Workshop on Computing Education Research,
pages 73–84, 2006.

[10] M. Jadud and P. Henriksen. Flexible, Reusable Tools for
Studying Novice Programmers. In Proceedings of the fifth
international workshop on Computing education research
workshop, pages 37–42, 2009.

[11] U. Kiesmüller, S. Sossalla, T. Brinda, and K. Riedhammer.
Online Identification of Learner Problem Solving Strategies
Using Pattern Recognition Methods. In Proceedings of the
fifteenth annual conference on Innovation and technology in
computer science education, pages 274–278, 2010.

[12] K. Mierle, K. Laven, S. Roweis, and G. Wilson. Mining Student
CVS Repositories for Performance Indicators. ACM SIGSOFT
Software Engineering Notes, 30(4):1–5, 2005.

[13] C. Murphy, G. Kaiser, K. Loveland, and S. Hasan. Retina:
Helping Students and Instructors based on Observed
Programming Activities. In Proceedings of the 40th ACM
Technical Symposium on Computer Science Education, pages
178–182, 2009.

[14] C. Norris, F. Barry, J. B. Fenwick Jr, K. Reid, and J. Rountree.
ClockIt: Collecting Quantitative Data on How Beginning
Software Developers Really Work. ACM SIGCSE Bulletin,
40(3):37–41, 2008.

[15] D. N. Perkins, C. Hancock, R. Hobbs, F. Martin, and
R. Simmons. Conditions of Learning in Novice Programmers.
Journal of Educational Computing Research, 2(1):37–55, 1986.

[16] C. Piech, M. Sahami, D. Koller, S. Cooper, and P. Blikstein.
Modeling How Students Learn to Program. In Proceedings of
the 43rd ACM technical symposium on Computer Science
Education, pages 153–160, 2012.

[17] M. Rodrigo and R. Baker. Coarse-Grained Detection of Student
Frustration in an Introductory Programming Course. In
Proceedings of the fifth international workshop on Computing
education research workshop, pages 75–80, 2009.

[18] M. M. T. Rodrigo, R. S. Baker, M. C. Jadud, A. C. M. Amarra,
T. Dy, M. B. V. Espejo-Lahoz, S. A. L. Lim, S. A. Pascua, J. O.
Sugay, and E. S. Tabanao. Affective and Behavioral Predictors
of Novice Programmer Achievement. ACM SIGCSE Bulletin,
41(3):156–160, 2009.

[19] J. Spacco, D. Fossati, J. Stamper, and K. Rivers. Towards
Improving Programming Habits to Create Better Computer
Science Course Outcomes. In Proceedings of the 18th ACM
conference on Innovation and technology in computer science
education, pages 243–248, 2013.

[20] J. Spacco, J. Strecker, D. Hovemeyer, and W. Pugh. Software
Repository Mining with Marmoset: An Automated
Programming Project Snapshot and Testing System. ACM
SIGSOFT Software Engineering Notes, 30(4):1–5, 2005.

[21] J. C. Spohrer and E. Soloway. Novice Mistakes: Are the Folk
Wisdoms Correct? Communications of the ACM,
29(7):624–632, 1986.

[22] J. G. Spohrer and E. Soloway. Analyzing the high frequency
bugs in novice programs. Empirical Studies of Programmers,
1986.

[23] E. Tabanao, M. Rodrigo, and M. Jadud. Identifying At-Risk
Novice Programmers through the Analysis of Online Protocols.
In Philippine Computing Society Congress 2008, 2008.

[24] E. Tabanao, M. Rodrigo, and M. Jadud. Predicting At-Risk
Novice Java Programmers Through the Analysis of Online
Protocols. In Proceedings of the seventh international
workshop on Computing education research, pages 85–92,
2011.

[25] I. Utting, N. Brown, M. Kölling, D. McCall, and P. Stevens.
Web-Scale Data Gathering with BlueJ. In Proceedings of the
ninth annual international conference on International
computing education research, pages 1–4, 2012.

21

Academic Integrity: Differences between Computing

Assessments and Essays

Simon
University of Newcastle, Australia

simon@newcastle.edu.au

Beth Cook
University of Newcastle, Australia

beth.cook@newcastle.edu.au

Judy Sheard
Monash University, Australia

judy.sheard@monash.edu

Angela Carbone
Monash University, Australia

angela.carbone@monash.edu

Chris Johnson
Australian National University

chris.johnson@anu.edu.au

ABSTRACT

There appears to be a reasonably common understanding about

plagiarism and collusion in essays and other assessment items

written in prose text. However, most assessment items in

computing are not based in prose. There are computer programs,

databases, spreadsheets, and web designs, to name but a few. It

is far from clear that the same sort of consensus about plagiarism

and collusion applies when dealing with such assessment items;

and indeed it is not clear that computing academics have the

same core beliefs about originality of authorship as apply in the

world of prose. We have conducted focus groups at three

Australian universities to investigate what academics and

students in computing think constitute breaches of academic

integrity in non-text-based assessment items; how they regard

such breaches; and how academics discourage such breaches,

detect them, and deal with those that are found. We find a

general belief that non-text-based computing assessments differ

in this regard from text-based assessments, that the boundaries

between acceptable and unacceptable practice are harder to

define than they are for text assessments, and that there is a case

for applying different standards to these two different types of

assessment. We conclude by discussing what we can learn from

these findings.

Categories and Subject Descriptors

K3.2 [Computers and education]: Computer and Information

Science Education – computer science education

General Terms

Measurement

Keywords

Academic integrity, computing education, non-text-based

assessment

1. INTRODUCTION
Plagiarism and collusion are two major manifestations of

academic dishonesty. Plagiarism occurs when a student uses the

work of others without appropriate acknowledgement. Collusion

is somewhat similar, but is distinguished by the fact that the

‘others’ are typically the student’s own colleagues: collusion is

essentially the sharing of work among students, whether the

submissions be based on the work of one student or on a

collaborative effort. With plagiarism, work purporting to be that

of the student or group has too much in common with work that

is typically in the public domain. With collusion, work

purporting to be that of the student or group has too much in

common with the work of other students or groups, often in the

same class. Just how much is too much tends to depend on the

context [37]. It is also difficult to be clear about what constitutes

collusion in circumstances where students are encouraged to

work together except when doing assessable work [5].

There appears to be broad agreement [14, 31, 34] that:

• Plagiarism and collusion are not good for the student,

because students who plagiarise or collude are failing to

practice the academic skill of assimilating the ideas of others

and using them as the basis of one’s own ideas. Rather, they

simply echo the ideas of others with no evidence of

assimilation or even of understanding. These practices are

also seen as diminishing the students’ employment

prospects: employers do not want to see their reputations put

at risk by what they see as a form of irresponsible behaviour.

• Plagiarism and collusion are not fair on other students: when

students choose to work hard for their marks – or, indeed,

not to work hard and to accept a lower mark – they feel

aggrieved when other students attain good marks for

submitting somebody else’s work.

• Plagiarism and collusion are not good for the institution, as

graduates who have side-stepped the learning process may

not perform well in the workplace, reflecting poorly on the

institution and on the discipline.

• Plagiarism and collusion are not good for the education

system as a whole because they suggest that the system is

willing to produce graduates who have succeeded not by

independent thought and analysis but by finding the work of

others that has some bearing on the subject at hand and

presenting it as their own.

The literature of academic integrity leans heavily towards

plagiarism of prose text. This focus is sometimes explicit, but

more often implicit. Books on avoiding plagiarism [5, 19, 29]

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

Koli Calling ’13, November 14-17 2013, Koli, Finland.

Copyright 2013 ACM 978-1-4503-2482-3/13/11…$15.00.

http://dx.doi.org/10.1145/2526968.2526971

22

focus almost exclusively on text-based plagiarism, with

references to such concepts as paper mills, literature, using other

people’s words, translating foreign articles, and so on.

Suggested ways of avoiding plagiarism include learning to

paraphrase and learning how to synthesise the words of multiple

authors. Referencing guides explain how to place directly copied

text into quotation marks and reference it appropriately. All of

this is done with little apparent recognition that text is not the

only form of work that can be plagiarised.

In relation to prose text, students are generally less likely than

academics to recognise certain practices as plagiarism or

collusion [4, 12, 33]. Moreover, many students remain confused

about definitions of plagiarism and collusion and expectations

regarding academic integrity [17, 26].

While there is much work on educating students to avoid

plagiarism and produce work that is clearly their own, detection

of similarity remains a cornerstone of practice in academic

integrity [5, 9, 11, 39]. So long as there are some students who

are willing to plagiarise, and so long as this is seen as

inappropriate, some academics will apply techniques to help

them determine whether the work they are assessing is

plagiarised. Within the realm of text-based assessment there are

many standard tools to assist in the detection of similarity, tools

such as Turnitin and AcademicPlagiarism.

Yet the higher education system includes numerous academic

disciplines in which prose text is not the principal medium of

assessment. Art students and design students are required to

produce images as part of their assessment; mathematics

students are required to construct mathematical proofs and

derivations; music students are required to write musical

compositions; computing students are required to write

computer programs and to construct databases and spreadsheets;

architecture students are required to produce plans and

drawings. These forms of assessment are all dramatically

different from prose text. Furthermore, none of these forms of

assessment are amenable to the similarity detection of the

standard tools such as Turnitin. Turnitin cannot tell whether two

computer programs, two databases, two images, or two musical

compositions have too much in common to be considered as

distinct pieces of work.

Furthermore, while there appears to be broad agreement on the

nature and inappropriateness of text plagiarism, academics and

students in the non-text-based areas do not necessarily regard

the use of others’ work in the same light as do academics and

students in text-based areas. In a world where re-mixes, mash-

ups, re-use of computer code and other combinations of existing

work are increasingly accepted and valued as legitimate

professional and creative practice, some authors question the

value of insisting that the work produced by students must be

substantially or entirely original [18, 21].

Further still, the types of academic dishonesty tend to vary from

field to field. It is possible that design students lacking

inspiration will tend to base their work on an image found

somewhere in the public domain, whereas students struggling

with computer programming might be likely to borrow and

appropriate the work of their more capable colleagues, or to

work in inappropriately large groups to produce a joint solution

to the problem at hand.

2. BACKGROUND
Some types of assessment items in computing involve text, but

of a type that is not amenable to the standard techniques and

tools used for similarity detection in prose text. Computer

programs, for example, generally have a large text component;

but that component is written in a computer programming

language, not in a natural language such as English, and the

same similarity criteria do not apply. Formal structures such as

those found in computer programs are not amenable to detection

on the basis of the percentage of textual similarity [13, 14, 18].

Students quickly learn that two computer programs look quite

different textually if they have different variable names, different

comments, and different spacing, even though they are to all

intents and purposes the same program. For this reason, students

copying one another’s computer programs tend to change the

variable names, comments, and spacing, in the hope of evading

detection [3, 23, 25]. However, the similarity between the

programs is actually evidenced by their logical structure, and

such copying tends to be readily detected.

Other items for assessment in computing include databases and

spreadsheets. Although these items have some text within them,

they cannot in any way be described as text documents, they

cannot meaningfully be converted into reader-friendly text

documents, and again the points of similarity between two such

items are far more likely to be in their structure than in their

textual content.

Because copying and collusion are rife among students of

computer programming [3, 7, 10, 13, 15, 36, 37, 41], a large

number of similarity detectors have been created [1, 3, 8, 23, 30,

40]. Unfortunately, many of these detectors work with programs

in just one programming language, and programming is taught

in many different programming languages. There are some

similarity detectors for multiple programming languages [3, 32],

but their adoption appears to be far less wide than that of, say,

Turnitin in the realm of prose assessment [5]. In other areas of

computing, such as spreadsheets and databases, we have found

no similarity detectors. Similarities between submissions are

detected by eye, if at all.

There are computing academics who do not check for plagiarism

and others who pay no heed to inappropriately similar

submissions even when they notice them [7, 10, 18].

Anecdotally, they suggest that as the students are likely to be

working collaboratively when they graduate and find

employment, it is not inappropriate to do the same when they

are studying. Others fiercely seek out similar submissions,

insisting that the mark given to an individual should be for work

carried out by the individual. This range of diverse academic

opinions and behaviours has not been explored in any

systematic way. Computing degree programs are almost all

professionally accredited, and relate their development of

student behaviour to the computing industry; but the

expectations of good professional practice in acknowledging the

work of others are not reported, and the codes of ethics and

professional practice in computing do not cover this.

We aim to find answers to a number of specific questions:

• How do academics and students perceive academic integrity

in regard to non-text-based computing assessment items?

• Are there assessments for which academics and/or students

think that every answer is unique, so copying is acceptable

so long as one personalises the copy?

23

• Are there areas in which academics and/or students think

that there is only one correct answer, so copying cannot be

detected?

• What steps do academics and students take to ensure that

academic standards are adhered to?

• What do academics do to detect similarities that might

suggest academic misconduct?

• How serious is academic misconduct considered to be and

how is it dealt with?

• To what extent do computing academics believe that

university policies for academic integrity are adequate for

non-text-based assessments?

3. RESEARCH APPROACH
We conducted focus groups of computing students and

academics at three Australian universities in late 2012 and early

2013. Three focus groups were made up of 12 students studying

information technology, business systems, commerce and

educational technology. Three focus groups of academics

comprised 18 teaching staff. Participation in the focus groups

was voluntary, with participants responding to posters or email

advertising the research or to direct approaches by researchers.

There is no assurance that the perceptions of participants are

representative of other students and academics at these or other

institutions. The staff and student focus groups were held

separately, and no teachers were present at the student focus

groups, as their presence might have constrained the students’

responses.

The purpose of the focus groups was to inform the design of a

broad survey to be conducted subsequently. The focus groups

were based on an indicative set of questions, with the facilitators

encouraged to ask exploratory follow-up questions when the

discussion suggested so doing.

The focus groups were recorded and transcribed, and the

transcripts were corrected and shown to the participants in case

they might feel there were any egregious errors in the

transcriptions.

Researchers used a directed or deductive content analysis

methodology, using the extant literature to identify key concepts

that were used to develop initial coding categories [20, 28].

Further categories were developed from the data using an

inductive process. This approach combines the benefits of 1)

using insights from the literature to validate or challenge

previous findings; and 2) maintaining the flexibility to

incorporate new insights directly from the data.

The initial analysis included listening to the tapes and reading

the transcripts. The transcripts were then coded using the initial

categories. Data outside these categories were identified and

subsequently examined to determine whether they suggested

new categories. Finally, the categories were reduced to themes,

and the responses listed under each theme were analysed for

concordance or conflicting views.

4. FINDINGS
The analysis identified five major themes: the level of

understanding of academic integrity issues; perceptions of the

importance of academic integrity; the complexity of computing

compared with text-based situations; the processes of detecting

and dealing with breaches; and, at an emotional level, the impact

on relationships within institutions. This section explores these

themes in relation to the research questions.

Based on the premise that most universities strive to inform their

students about the requirements of academic integrity, but that

the information provided is highly skewed towards the written

word, the focus groups began with a discussion on academic

integrity in essays and similar assessments.

4.1 Perceptions of academic integrity in

regard to essays

Discussion around plagiarism and collusion relating to essays

revealed considerable variation in the level of understanding of

participants. Staff and students agreed that taking other people’s

words or ideas without acknowledgement constituted

plagiarism. This includes ‘copy and paste’ and paraphrasing

without referencing. However, a number of students thought that

they needed to reference only when using a direct quote,

including one who stated:

‘If you’re adding your own ideas in it I think it makes it

yours because you’re not directly like using their ideas.

You’re writing it differently.’

Plagiarism was viewed as a serious matter. Although the

students might not share the accepted understanding of what

plagiarism is, they know that it’s not a good practice.

‘It defeats the purpose of being at university.’

‘Well it’s not proving your own ability so it is extremely

important.’

Among the students, few were familiar with the concept of

collusion. Once it was defined for them, they had difficulty

imagining what collusion might mean in the context of an essay-

type assessment. One group concluded that it was not really

possible to collude in writing an essay unless the students used

exactly the same words. They felt that it was acceptable to show

an essay to a friend and get them to correct any mistakes,

including correcting the ideas and pointing out that the student

had misinterpreted the question.

‘Cause even if they do help, like they tell you that your thing

is wrong and you suddenly have a change of heart and you

agree with them. When you rewrite it it’s in your own

words. It’s not in their words. So it’s not copying.’

4.2 Perceptions of academic integrity in

regard to computing assessment items

Perceptions about plagiarism and collusion in computing were

shaped by opinions about seriousness, levels of understanding,

the additional complexity (including requirements that varied by

assessment), and fuzzy boundaries.

While computing assessments are many and varied, including

databases, spreadsheets, design diagrams, and more, most of the

discussion in the focus groups clearly revolved around computer

programming assessments.

Students and academics stated that sources need to be

acknowledged.

‘Someone else’s code that you’ve got to acknowledge where

it’s come from, and both document that in the code and

acknowledge it in any formal, prose-form documentation

that they produce.’ (Student)

24

‘...if there is some or all of their code that is not authored by

them it has to be acknowledged.’ (Academic)

The focus groups revealed that both plagiarism and collusion are

issues, and that in the area of computing, collusion may be more

of an issue than plagiarism, a view that supports the findings of

Culwin et al [10]. Students spoke extensively about assisting

friends with code if they were stuck, pointing them in the right

direction, and comparable practices. They also discussed using

libraries and message boards as a normal practice in computing.

Plagiarism in computing

As with essays, there was general agreement that plagiarism is

copying or using someone else’s ideas or work without

acknowledging it. Some participants made no clear distinction

between plagiarism and collusion: for example, some specific

actions mentioned as forms of plagiarism were paying someone

else to write code and taking someone else’s USB device and

copying their work from it.

However there were some issues that participants thought led to

differences between plagiarism in essays and plagiarism in

computing. First, there was the tradition of learning from the

community, in which programmers adapt and learn from the

code of other programmers. Second, students felt uncertain

about whether they are permitted to reuse code they have

previously developed for another purpose. There are certainly

some programming courses in which code reuse is accepted as

good practice [13, 22]. Third, there was the difference that while

a reference in an essay is obvious when reading the essay, there

is no way to make a reference in a program obvious when

running the program, and reference guides provide scant

information on how to reference code [13]. Of course the

reference can be included in the code, but that will seldom be

seen by users of the program. One student commented:

 ‘…there’s no formal way or clear way to do that. We’ve

talked about writing comments in code to say where these

come from but that’s certainly not a standard way of doing

that.’

Differences such as this led to a general feeling that it is much

more difficult to establish the boundaries than it is with text-

based assessments.

The fact that most university policies and plagiarism modules

are largely silent on non-text-based assessments such as

computer code has contributed to a situation where students are

unclear about what practices constitute plagiarism [22]. Students

who participated in the focus groups stated that they had

received little specific education or guidance in relation to

computer code. Therefore, they relied on what some referred to

as their own ethics for guidance:

‘We’re not saying what we do is right, we’re saying that’s

how we do it. We run it based on our ethics’

‘We’re just going on ethics and they haven’t expressly told

us how much of our code we can’t reuse from someone else

or where we can’t get it from’

Possible consequences of such approaches were evident in one

of the student focus groups where there was a lengthy discussion

about individual students’ abilities to determine intuitively

whether practices constituted plagiarism or collusion.

‘And in this it always comes back to ethics. If I feel like I’ve

done something that’s my work and … I don’t feel like I’ve

plagiarised it, then the chance is I haven’t and even if I have

then it’s probably, like I could probably prove that I haven’t,

sort of thing. Like because of the amount of steps that you

go through to do work and like no program has like one

version of a program.’

Among students there was a feeling that it was acceptable to use

other people’s ideas but not to copy code.

‘If you start copying their code, how they got their idea to

work, then I think you’ve crossed the boundary.’

 ‘It’s still for me fuzzy ’cause there’s an emphasis on peer

learning as well. It’s hard to know where help stops and

plagiarism starts, I think.’

However, opinions varied significantly between individual

students. Some felt that they could only be said to have copied

code if they copied whole programs or whole websites, and

there was a great deal of discussion about the acceptability of

taking smaller pieces of code, and about how much of one’s

own work needed to be added to a piece of code in order to

consider it one’s own.

 ‘…I just Google and I implement and I feel like because I

had to implement it and stuff like that and make it work

within my code and add things to it, it becomes mine.’

‘Plagiarising code: it’s just copying the exact code and

pasting it into your own work.’

Confirming previous research [7, 13, 15, 22], the focus groups

revealed that the academics’ perceptions of plagiarism were

generally somewhat stricter and more consistent than the

students’ perceptions For example, one academic described as a

myth the widely held view of students that it was not plagiarism

if they changed the code by 10 or 20 percent.

Notwithstanding this, the academics conceded that the

boundaries remained blurred.

‘…there’s a difference between using something as a

reference and actually copying something outright… I think

it’s just very hard to define.’

While previous research has established that students are likely

to have a more liberal view than academics of the acceptability

of certain practices [13, 15, 36], at least one study found some

scenarios that students identified as unacceptable whereas

teachers agreed they were acceptable [38]. In a similar vein, one

academic in our focus groups was concerned that students are

sometimes mistaken in their belief that something is plagiarism.

 ‘I’ve actually had the reverse experience of plagiarism, of

trying to get students to understand that it is actually quite

legitimate to use existing code and further develop that,

rather than having to start from scratch… there is always

some of this, that I can’t use someone else’s work because

that would be plagiarism.’

Collusion in computing

The focus groups revealed that there are different perceptions of

what constitutes collusion between the two groups and also

within the groups. This was further complicated by the fact that

what constitutes collusion varies from one assessment to

another, based on the assessment specifications.

The issue for academics revolved around the educational

objectives of the particular assignment, although it was

generally agreed that students were probably not entirely clear

25

on this point and that academics could do a better job of

explaining why they wanted students to complete the work

individually.

While academics often permitted some level of collaboration,

there was considerable variation in what was acceptable. Some

academics said that students could discuss the assignment but

could not collaborate on the development of code.

 ‘I encourage students to collaborate and brainstorm right

down to the point where they’ve discussed details about the

assignment but they’re writing their own code…if it’s about

helping a friend to work out how methods are used, then do

it without the context of the assignment.’

One academic indicated that he would be prepared to allow

students to work together on an individual assessment as long as

they declared it.

‘I was trying to think of a model where we didn’t make it

illegal for them to work together, because as far as I’m

concerned if four of them work together and they turn in a

good assignment, well, they’ve learnt something. It doesn’t

worry me.’

However, without further safeguards such as interviewing

students and ensuring that they know how the code works and

can explain how it was developed, this approach would not

necessarily ensure that all students had contributed to the

assignment and met the learning objectives.

Students generally had a more liberal view of the level of

support that was permissible. In some instances this included

obtaining assistance with coding from fellow students and

posting code on message boards to seek assistance. These

methods were seen as legitimate so long as the answers pointed

them in the right direction rather than supplying the code.

‘…no one ever says “here’s the code to make it work”. They

always say “Have a look at this, it’s because IE does this or

Chrome does this to display it”.’

Some students adopted a more nuanced stance, distinguishing

between the legitimacy of these two approaches.

‘No, the difference is if you post your question online it will

be their solution. And you’re copying their solution. But

when your friend is checking, he’ll tell what’s wrong and

you have to change it yourself, so that’s different.’

A small minority of students thought that collusion occurred

only in extreme cases such as when two assignments were

exactly the same. One student stated that in situations where

students could not get code to work they had no alternative other

than to get help from somewhere:

‘Like if you’re stuck on like code or something, and like you

just don’t know how to fix it, if you don’t seek help you

can’t finish the assignment. You’re going to have to get

help.’

Student misconceptions about what constitutes plagiarism and

collusion, combined with the difficulty that both academics and

students mentioned in determining the boundaries of acceptable

and unacceptable practices, point to the need to clearly define

acceptable academic practice and educate students.

4.3 Is unreferenced copying legitimate so

long as one personalises the copy?

In general, students were more likely to agree with this

proposition than academics, although both groups

acknowledged that the boundaries are blurred. Both academics

and students expressed the view that it was permissible to copy

commonplace or trivial pieces of code without referencing.

Similarly, students sometimes felt that it was not necessary to

reference some code if they made considerable changes to it.

 ‘…like more complex but like still generic… Even stuff like

that I just Google and I implement and I don’t like, I feel

like because I had to implement it and stuff like that and

make it work within my code and add things to it, it

becomes mine. Whereas if it was like the variables were set

and I just copied a chunk, pasted a chunk and then left it, it

would be closer to plagiarism.’

To tease out where the boundaries are, students were presented

with a scenario where a student copied methods from the web

without referencing them. Students generally felt that this was

an acceptable practice, and one student justified it in these

terms.

‘You have to change the code and make it fit in the context

of your assignment so I wouldn’t think it would be

plagiarism.’

4.4 Is there sometimes only one correct

answer, so copying cannot be detected?

Academics agreed that students do think they can get away with

copying, particularly in relation to computer code. However,

they had differing views on why students had this perception.

The first position was that students think there is only one

correct solution so all the assignments will be identical

‘…the ones who do the totally copying seem to assume that

“there is only one right answer so nobody will know I’ve

copied”.’

An opposing view was that students think teachers simply run

the code to see if it works, and are not aware that their work

would be compared to that of other students.

 ‘Well I wondered if they don’t realise some of them that we

look at their code. I think maybe they think we only run it.

Because the cheating is so bad when we catch it, you know

I’m insulted that they think I’m so stupid.’

A third view was that there was a combination of these two

reasons.

‘They’ll at least know from the unit tiff, they think all we do

is run the unit tiff and we never look at their code and they

also think… a lot of them think that if we do happen to look

at their code, well everybody is going to have the same code

anyway.’

One group of computing students stated that on the rare

occasions where the question would lead to everyone having

similar or identical code, teachers would ensure that the task was

completed in class under supervision so there was no real

opportunity for students to collude or copy one another’s code.

They contrasted this with individualised assessments where it

was unlikely that they would have similar code, so high levels of

code similarity would alert academics to the possibility of

copying.

26

‘…with most of the open assessments like with make it up,

there’s infinite answers. So if they were so specific, and

because there’s infinite answers, if they were within a range,

like, this range, you can tell.’

However the ability of teachers to pick up similarity in such

situations was seen to be severely constrained if there were large

classes.

‘…if there’s a large class of say 100 students doing one

assessment, just an idea, how would they remember after

marking 100 assessments, which ones are similar? And you

can’t just put it in the computer.’

4.5 What do academics and students do to

ensure standards are adhered to?

Academics outlined numerous strategies they employ to ensure

that students adhere to academic integrity standards. The major

strategies involve education, monitoring work in class, and

viewing work in progress, and are well aligned with recognised

practice as summarised, for example, by Carroll [5].

In addition to the general information given to students by the

university, such as academic integrity modules, some academics

outlined methods they use to ensure that students understand

what plagiarism and collusion are and the parameters of

acceptable practice for the degree, the course, and specific

assignments. Frequently, supplementary written information is

provided in course outlines and/or specifications for each

assessment. Some academics also provide specific courses,

lectures or tutorials on academic integrity.

 ‘I present my lecture in the first or second week. I make it

very explicit about what they cannot do. Then if a student

gets caught they know they’ve been caught.’

A common practice is the provision of specifications with each

assignment so that students understand what is permissible for

the particular assessment task in line with the learning

objectives.

‘a very specific indication in the assignment specification as

to the expectation… that it is their own work, and that

anything that’s not their own work is clearly referenced as

such.’

Academics also employ a number of other strategies to reduce

opportunities for breaching academic integrity, strategies such as

designing individualised assignments, viewing work in progress,

and awarding marks for work in progress to encourage students

to apply sufficient effort in this area.

 ‘…a week after I give out an assignment they have to hand

in some pseudocode.’

Similarly, monitoring progress in class made it easier for staff to

keep track of individual students and reduce the likelihood of

cheating.

‘If you actually want students to generate code you don’t

send them away to do it, you have them sit down and

generate code in front of you.’

Some academics permitted collaboration within the specification

of assessment tasks, with safeguards to ensure that learning

objectives are met. One approach permitted students to

collaborate and hand in one assignment, and then each student

was interviewed to ensure that they understood the work.

Another academic outlined a similar approach:

‘The way I do it is by producing assignments, the

collaborative parts were small portions, so that even if they

do collaborate then I have these lab tests or quizzes or other

things and an exam where I can check that they’ve actually

learnt what they are meant to learn.’

Students expressed the view that they received little appropriate

instruction, either from academic integrity modules or similar

tasks to be completed by all students, or from special lectures,

tutorials, or assessment guidelines from computing academics.

This perception was in stark contrast to the extensive discussion

by academics detailing all their attempts to help students

understand and adhere to academic integrity standards.

The discussion of the steps students themselves take to maintain

academic integrity standards was succinct and centred upon

referencing when they copied code and not sharing code with

other students. Students also acknowledged that their

opportunities to plagiarise or collude were reduced by the

practices adopted by academics, as outlined above, such as

being given unique assignment tasks; submitting work in

progress as well as the final assessment item; working on

assessments in class; being required to demonstrate how they

developed their work; and attending interviews to explain how

the code worked.

4.6 How do academics detect similarities

that might suggest academic misconduct?

In line with much of the academic integrity literature [2, 6, 27,

29], the consensus among academics was that prevention is

more important than detection, although it is necessary to take

action when breaches occur.

 ‘If it is difficult to detect plagiarism in these non-text things

then the solution is not to find better ways of detecting it,

but to avoid the problem.’

Academics indicated that it was more time-consuming and more

difficult to detect plagiarism with non-text-based items such as

computer code than was the case for text. While some academics

said it was easy to detect copied code, others said it could be

detected only ‘with difficulty’. It was mentioned more than once

that detection was easier for small student cohorts where one

person is more likely to mark all of the assignments.

There are a number of strategies that can be used to detect

breaches of academic integrity. In the first instance academics

rely heavily on knowledge of the abilities of their individual

students. Breaches were frequently identified when students

submitted work that was better than expected.

‘If I get an assignment that’s better than I would expect from

that student, then I would be looking at it closely.’

A second method involved the use of technological solutions,

typically involving detection tools such as Google, Google

Image, Plaggie, JPlag, MOSS, and others.

Some academics indicated that they used techniques such as

looking for white space in the program that should not be there.

Similarly, variable names that did not seem appropriate could be

a pointer to copied code in which students had simply changed

the names of variables in an attempt to avoid detection.

‘I still use the detect tool because it looks at the words and

comments as well, it looks at identifiers and it doesn’t

attempt to look at program structure. And it sticks out like a

signature, particularly if they’ve taken stuff on the web and

27

they haven’t understood it and they haven’t changed the

identifiers…it is a fairly subtle signature sort of tool.’

However, detection tools are less effective with computer code

than with text due to the more constrained nature of computer

code, and the consequent increased probability of matching

segments in truly independent programs. Compared to the

situation with text, using the percentage of similarity to detect

plagiarism is not as straightforward in the case of code for many

reasons, including the formal structure of the language [7, 8, 25]

and the fact that students have similar levels of experience and

are using the same textbook [25].

One student participant in a focus group recounted a situation

where researchers asked students from different classes to

submit their assignments and then analysed the code for

similarities. There was a 90 per cent match between this

particular student’s code and that of another student even

though the students had never met or associated in any way.

While anecdotal, this raises the possibility of code detection

tools suggesting that students have copied code even when they

have worked independently.

In some instances staff indicated that other students provided

information on suspected breaches by their fellow students.

‘…we actually got emails from some students saying that

other students were asking questions on some sort of cheat

sites, and they were literally the questions that were being

put to them on the assignment.’

Testing a student’s knowledge of code (as mentioned in the

previous section) is also a potential detection method as well as

a reasonably effective deterrent.

4.7 How serious is academic misconduct

and how is it dealt with?

Focus groups were asked how serious an issue plagiarism and

collusion are. Due to some confusion over the wording, some

focus groups interpreted this in a normative sense and others

responded in relation to prevalence. Breaches of academic

integrity were seen as a serious issue since 1) they involve the

unethical practice of taking credit for work that was not

completed by the individual student; 2) they have the potential

to devalue qualifications from particular universities, or

universities in general, if graduates enter the workforce without

the necessary skills; and 3) they will eventually have negative

consequences for the individuals involved since they have not

developed the skills they need. Student comments included:

 ‘…so people will think [name of university] standards

aren’t very high and … it devalues the value of our degree’

‘…people will find out you’re not that good anyway.’

Academics’ assessments of prevalence varied and were very

general. However, breaches of academic integrity were generally

thought to greatly exceed the number of detected cases.

‘I always have a guilty feeling that it’s more prevalent that

I’m aware of and so I feel like that I’m being a bit naïve and

dumb. It’s the tip of the iceberg here.’

In relation to the issue of how breaches of academic integrity are

dealt with there was a broad difference of knowledge between

students and academics. Students appeared to be genuinely

concerned about the prospect of committing an inadvertent

breach of academic integrity and were aware that the

consequences could include expulsion from the university. One

student stated that the reason for not cheating was fear of being

caught and punished. However, students were not generally

aware of situations where breaches had been detected or of the

consequences for the students involved. While this could be

because few instances of breaches were being detected, some

students surmised that it was likely to be due to privacy

protections at the university.

On the other hand, academics recounted specific instances of

detecting breaches and how they were dealt with at their

universities. Some academics indicated that students were first

spoken to by the lecturer as part of the investigative process. If

students admitted to cheating the consequences might include a

warning or a zero mark for the assignment and/or a note in their

personal file. The case was escalated if the student denied the

breach and was unable to provide a satisfactory explanation.

‘…it’s only the ones where they’re in dispute that tend to

escalate to higher authority.’

In other universities there was no flexibility since university

policies stipulated that academics must immediately report any

suspicions to a nominated academic conduct officer.

The prevailing view of academics was that breaches are difficult

to prove and that pursuing breaches was time-consuming and

resource-intensive. Some stated that they received inadequate

support from their university, both in terms of resources and

because the university was sometimes too lenient with students.

‘…you’re not supported higher up in the system and that

happens a lot at our institution.’

4.8 Is the university policy adequate for

non-text-based assessment items?

Academics were unanimous in the view that university policies

related predominantly to text-based situations and there is not

enough information on what is expected in non-text-based

situations. Academics identified the need for further

development to incorporate non-text assessments.

‘… I think when it comes to interpreting the policy with

regard to non-text it doesn’t really stack up… our students

… are required to do an academic integrity module … and it

really doesn’t address at all things like images and computer

programs and databases, and diagrams, and mathematical

proofs, and all the rest of it.’

However, some academics also noted that if there was a rigid

policy developed for non-text-based assessments it could leave

them without the flexibility they now enjoy.

Due to the inadequacy of whole-of-institution approaches that

concentrate on text, some other initiatives have been developed

for non-text-based assessments and practice as mentioned

previously: special lectures / tutorials for students to make sure

they are aware of how academic integrity relates to non-text-

based assessments; and specifications for each assignment

outlining what can and cannot be done.

Academics stressed that there is a need for consistency in

policies pertaining to non-text-based assessment items, but this

is complicated by the fact that there are different requirements

related to educational objectives between faculties, degrees,

courses, and even within courses. Therefore, it is necessary to

have very clear guidelines at all levels and to ensure that

28

students understand what is required of them and why – what

the learning objectives are that these requirements contribute to.

‘…how do we inform students that this difference in

approach is expected? That in one course we’ve got “you are

expected to implement your own, bar very simple, almost

year one things”. But in another you are expected to make

optimum reuse of existing things?’

Both academics and students expressed the view that there is a

case for applying different standards for non-text-based

computing assessments. One academic commented:

 ‘I think that policy should give just general guidelines, it

depends on the discipline. Like Computer Science and the

Law school in terms of plagiarism are different.’

Similarly, students pointed to what they considered to be

significant differences for non-text situations.

‘…when you’re just getting chunks of code, you’re not

really copying, you’re just getting concepts behind it and

interpreting it to yourself.’

Moreover, some students felt that guidelines would need to vary

by the type of non-text-based assessment involved, which would

result in different guidelines for programming, web design, and

images, for example. They also thought that establishing rules

would be problematic due to the rapidly changing nature of

computing.

‘…that’s why it’s just going to be so grey and it’s got to be a

process. It can’t be a rule book.’

Another issue that emerged with both academics and students

was the tension between academic expectations and the

standards that apply in the workforce. One student noted that, in

contrast to the academic situation,

 ‘…in the real world in IT stuff there’s like exceptions and

there’s different rulings based on different things which

makes them a bit more complex.’

One student expressed the more extreme view that there was

nothing wrong with collusion because it was the normal way of

working in professional world.

‘I don’t understand collusion myself because like basically

collusion is like working together, right, and 99% of the

world is made up of people working together to get things

done. So in my eyes I’m not really for rules against.’

In the focus groups with academics there was a difference of

opinion as to whether there should be two distinct standards

(academic and commercial) or whether a common standard

should be developed. Academics also debated whether students

should be educated to understand commercial standards while at

university in order to prepare them for the workforce. Comments

from academics included:

 ‘…to respect real practice in our discipline and to make

education match what people are going to find in the

workplace later, which has to do with reuse, teamwork, and

so on.’

 ‘…in their professional life….it is perfectly legitimate for

them to go to Google and look on the web and look at other

companies that have solved similar problems.’

5. OTHER ISSUES ARISING
Other issues that emerged from the data related predominantly

to deficits in students’ understanding of the importance of

academic integrity. Academics discussed a number of issues that

were almost entirely neglected in the student focus groups. First,

academics stressed that one prominent reason for developing

and implementing standards was to ensure that the learning

objectives of the course were met. If students were conscious of

the learning objectives of assignments they would be more likely

to be engaged and honour the assessment specifications.

‘So that they can engage with the kind of educational

objectives, rather than misunderstanding them and then

behaving in perverse ways because they think we’re

assessing them on basic learning stuff.’

While the majority view was that communicating the

educational objectives of assessments could be improved, there

was a perception that practices varied considerably between

universities, and one academic thought that current practices at

their university were adequate.

‘At my university we have a legal obligation to do so. We

have to. We have an academic integrity statement that we

have to make at the beginning of the course, and before

every assignment; and then on top of that we like to – it’s

not legally required, but we like to articulate the learning

goals of the assignment as well, to make it clear for the

students.’

A second area that academics identified was facilitating a greater

understanding of why students should cite sources. This

included principles of scholarship:

‘… the provenance of your work, why is this a reliable thing

to use, what’s the integrity of this, so there’s traceability…

In addition, a number of academics mentioned that from a

pragmatic point of view students should be made aware of the

fact that they would obtain higher marks by citing their sources.

The third issue that academics raised related to cultural

differences between international and domestic students.

Cultural differences have been identified in studies of

computing students’ perceptions of plagiarism [22]. Some

instances related by academics in the focus groups included

international students working in groups despite being

instructed to work alone or copying solutions when they were

expected to develop their own solutions. In another instance,

Chinese students justified copying solutions from a lecturer by

saying:

‘… what are we supposed to do, because in China, in Asian

culture … when there is a mentor, what are we taught, I

should follow that. If the teacher says do it this way we

should just follow the teacher.’

This suggests that there is a need to ensure that international

students are educated to understand the requirements of studying

in an Australian university.

Finally, the academic focus groups postulated reasons why

students breach academic integrity guidelines. Major reasons

included: looking for shortcuts; not being able to see the

relevance of the work; high expectations of teachers; time

pressures; and the myth that it is not plagiarism if they change it

by 10 or 20 per cent. Previous studies involving computing

29

students have identified similar reasons for cheating [10, 13, 36,

37, 41].

6. CONCLUSION AND FURTHER WORK
The focus groups revealed that plagiarism and collusion are

viewed as serious issues by academics and students, but many

students lack a holistic appreciation of the importance of

academic integrity. Perhaps as a consequence, some students

revealed a fear of inadvertently breaching the academic integrity

rules. These issues also impact on the relationship between

students and the academics who police academic integrity.

The overwhelming view of the academics and students who

participated in the focus groups was that there is a substantial

difference between computing assessments and text-based

assessments, and that the boundaries of acceptable and

unacceptable practices are much more difficult to define for

computing assessments than for essays.

The focus groups confirmed that academic integrity policies in

these institutions remain heavily prose-based and guidelines for

non-text-based assessments are underdeveloped. Both the

academics and the students supported the view that there is a

case for different standards of academic integrity for non-text-

based assessments, but also stressed the need for consistency in

policies pertaining to such assessment items.

Academics understood the need for clarity and consistency in

guidelines. However, policy development is complicated by

differences in perceptions of academic integrity, both between

academics and students and within each group, as well as

different requirements related to educational objectives between

faculties, degrees, courses, and even within courses.

Furthermore, if specific non-text-based policies were devised,

they would need to be carefully incorporated into the existing

policies, which relate mainly to prose-based items.

Initiatives that academics have developed to fill the current void

and inform students of requirements for non-text-based

assessments include delivering special lectures or tutorials on

academic integrity as it relates to these assessments, and issuing

detailed academic integrity guidelines in the specifications for

each assignment. Despite these initiatives, student awareness

remains low, echoing findings of knowledge or perception

asymmetries from other research in computing [13, 15, 35]. The

chasm between academics’ attempts to inform and prevailing

student understandings warrants further research to determine

why these attempts to inform students are currently ineffective,

and to develop improved strategies.

Previous research has emphasised the need for a holistic

approach to academic integrity that incorporates education,

clearly defined policies which are adhered to, and attempts to

inculcate antipathy to breaches of academic integrity [14, 15, 16,

34]. Joyce et al [24: 195] state:

‘we must ensure that we give equal emphasis to the

necessary ingredients: assessment design, education of staff

and students, detection tools, academic integrity policies,

and disciplinary processes.’

Greening et al [16] advocate integrating ethics education into

computing courses rather than teaching it in stand-alone units.

Innovations such as these would allow a discussion of ethics in

relation to the real situations likely to be faced by students in

their academic and professional lives.

A possible direction for future research that would contribute to

this holistic model involves developing communication

strategies that enunciate why students are expected to conform

to academic integrity requirements. An emphasis on the learning

objectives of assessment tasks might engender a greater

commitment from students to engage with and abide by the

policy.

In relation to breaches of academic integrity, the majority of

participants agreed that collusion was more prevalent than

plagiarism amongst computing students.

Academics use a number of methods to detect plagiarism and

collusion, including similarity detection software and inspecting

code for similarities.

Policies for dealing with breaches varied between institutions.

Some academics have a level of discretion when suspected

breaches are detected, while others are required to escalate

breaches immediately.

While these focus groups involved staff and students at three

universities, we are now conducting a survey across a far larger

number of institutions within Australia. This survey will ensure

a more representative perspective, and will give us a feel for the

prevalence of the beliefs that we have identified.

At the heart of this work is the question of whether the same

academic integrity guidelines should apply to non-text-based

computing assessment items as to essays. The focus groups

suggest that there might be a case for different standards, and we

shall look with interest to see whether the survey confirms this

belief.

If the feeling is that the same guidelines should apply, but that

this is not currently happening, we would hope to develop tools

to help academics and students in computing understand and

apply the academic integrity guidelines. On the other hand, if

the feeling is that the guidelines were developed for essays and

similar assessment items and are not appropriate for non-text-

based assessment items, we would aim to develop more

appropriate academic integrity guidelines and to argue for their

adoption.

7. REFERENCES
[1] Ahtiainen, A, S Surakka, and M Rahikainen (2006).

Plaggie: GNU-licensed source code plagiarism detection

engine for Java exercises. Sixth Baltic Sea conference on

Computing Education Research (Koli Calling 2006), Koli,

Finland 141-142.

[2] Alam, LS (2004). Is plagiarism more prevalent in some

forms of assessment than others? 21st ASCILITE

Conference, 48-57.

[3] Arwin, C and SMM Tahaghoghi (2006). Plagiarism

detection across programming languages. 29th

Australasian Computer Science Conference, 277-286).

[4] Brimble, M and P Stevenson-Clarke (2005). Perceptions of

the prevalence and seriousness of academic dishonesty in

Australian universities. The Australian Educational

Researcher 32(3): 19-44.

[5] Carroll, J (2002). A Handbook for Deterring Plagiarism in

Higher Education. Oxford Centre for Staff and Learning

Development, Oxford, UK.

[6] Christe, B (2003). Designing online courses to discourage

dishonesty. Educause Quarterly 2003(4): 54-58.

30

[7] Chuda, D, P Navrat, B Kovacova and P Humay (2012) The

issue of (software) plagiarism: a student view. IEEE

Transactions on Education 55(1): 22-28.

[8] Cosma, G and M Joy (2012). An approach to source-code

plagiarism detection and investigation using latent semantic

analysis. IEEE Transactions on Computers, 61(3): 379-394.

[9] Crisp, GT (2007). Staff attitudes to dealing with plagiarism

issues: perspectives from one Australian university.

International Journal for Educational Integrity 3(1): 3-15.

[10] Culwin, F, A MacLeod, and T Lancaster (2001). Source

Code Plagiarism in UK HE Computing Schools: Issues,

Attitudes and Tools. Joint Information Systems Committee.

[11] Curtis, GJ and R Popal (2011). An examination of factors

related to plagiarism and a five-year follow-up of

plagiarism at an Australian university. International Journal

for Educational Integrity 7(1): 30-42.

[12] de Lambert, K, N Ellen, and L Taylor (2006). Chalkface

challenges: a study of academic dishonesty amongst

students in New Zealand tertiary institutions. Assessment &

Evaluation in Higher Education 31(5): 485-503.

[13] Dennis, L (2004). Student attitudes to plagiarism and

collusion within computer science. International Plagiarism

Conference 2004, viewed 28 March 2011, available at:

http://www.plagiarismadvice.org/research-papers.

[14] Dick, M, J Sheard, C Bareiss, J Carter, D Joyce, T Harding,

and C Laxer (2003). Addressing student cheating:

definitions and solutions. SIGCSE Bulletin 35(2): 172-184.

[15] Dick, M., J Sheard, and S Markham (2001). Is it okay to

cheat? The views of postgraduate students. ACM SIGCSE

Bulletin 33(3): 61-64.

[16] Greening, T, J Kay, and B Kummerfeld (2004). Integrating

ethical content into computing curricula. Sixth Australasian

Conference on Computing Education, 91-99.

[17] Gullifer, J and GA Tyson (2010). Exploring university

students’ perception of plagiarism: a focus group study.

Studies in Higher Education 35(4): 463-481.

[18] Hamilton, M, SMM Tahaghoghi, and C Walker (2004).

Educating students about plagiarism avoidance - A

computer science perspective. International Conference on

Computers in Education, 1275-1284.

[19] Harris, R (2001). The Plagiarism Handbook. Pyrczak

Publishing, Los Angeles, USA.

[20] Hsieh, H-F and SE Shannon (2005). Three Approaches to

Qualitative Content Analysis. Qualitative Health Research

15(9): 1277-1288.

[21] Johnson-Eilola, J, and SA Selber (2007). Plagiarism,

originality, assemblage. Computers and Composition 24(4):

375-403.

[22] Joy, M, G Cosma, J Y-K Yau, and J Sinclair (2011).

Source code plagiarism – a student perspective. IEEE

Transactions on Education 54(1) 125-132.

[23] Joy, M, and M Luck (1999). Plagiarism in programming

assignments. IEEE Transactions on Education 42(2): 129-

133.

[24] Joyce, D (2007). Academic integrity and plagiarism:

Australasian perspectives. Computer Science Education

17(3), 187-200.

[25] Mann, S, and Z Frew (2006). Similarity and originality in

code: plagiarism and normal variation in student

assignments. Eighth Australasian Computing Education

Conference, 143-150.

[26] McCabe, D L, KD Butterfield, and LK Treviño (2006).

Academic dishonesty in graduate business programs:

prevalence, causes, and proposed action. Academy of

Management Learning & Education 5(3): 294–305.

[27] McCabe, DL, LK Treviño, and KD Butterfield (2001).

Cheating in academic institutions: a decade of research.

Ethics & Behavior 11(3): 219-232.

[28] Moretti, F, L van Vliet, J Bensing, G Deledda, M Mazzi, M

Rimondini, C Zinnermann and I Fletcher (2011). A

standardized approach to qualitative content analysis of

focus group discussions from different countries. Patient

Education and Counselling 82: 420-428.

[29] Neville, C (2010). The Complete Guide to Referencing and

Avoiding Plagiarism. Open University Press, Maidenhead,

UK

[30] Ohno, A, and H Murao (2008). A quantification of students

coding style utilizing HMM-based coding models for in-

class source code plagiarism detection. Third International

Conference on Innovative Computing, Information and

Control, ICICIC '08, 553-556. doi:

10.1109/ICICIC.2008.614.

[31] Popyack, JL, N Herrmann, P Zoski, B Char, C Cera, and

RN Lass (2003). Academic dishonesty in a high-tech

environment. SIGCSE 2003, 357-358.

[32] Prechelt, L, G Malpohl, and M Philippsen (2002). Finding

plagiarisms among a set of programs with JPlag. Journal of

Universal Computer Science 8(11): 1016-1038.

[33] Razera, D, H Verhagen, TC Pargman, and R Ramberg

(2010). Plagiarism awareness, perception and attitudes

among students and teachers in Swedish higher education –

a case study. Fourth International Plagiarism Conference,

Newcastle upon Tyne, UK.

[34] Riedesel, CP, AL Clear, GW Cross, JM Hughes, Simon,

and HM Walker (2012). Academic integrity policies in a

computing education context. ITiCSE Working Groups

2012.

[35] Sheard, J and M Dick (2011). Computing student practices

of cheating and plagiarism: a decade of change. ITiCSE’11,

Darmstadt, Germany, 233-237.

[36] Sheard, J and M Dick (2012). Directions and dimensions in

managing cheating and plagiarism of IT Students.

Fourteenth Australasian Computing Education Conference

(ACE2012), Melbourne, Australia, 177-185.

[37] Sheard, J, S Markham, and M Dick (2003). Investigating

differences in cheating behaviours of IT undergraduate and

graduate students: the maturity and motivation factors.

Higher Education Research and Development 22(1): 91-

108.

[38] Stepp, M and B Simon (2010). Introductory computing

students' conceptions of illegal student-student

collaboration. SIGCSE 2010, Milwaukee, USA, 295-299.

[39] Sutherland-Smith, W and R Carr (2005). Turnitin.com:

teachers’ perspectives of anti-plagiarism software in raising

issues of educational integrity. Journal of University

Teaching & Learning Practice 2(3), accessed at

http://ro.uow.edu.au/jutlp/vol2/iss3/10.

[40] Vandeventer, J and B Barbour (2012). CodeWave: a real-

time, collaborative IDE for enhanced learning in computer

science. SIGCSE 2012, 75-80.

[41] Vogts, D (2009). Plagiarising of source code by novice

programmers a “cry for help”? 2009 Annual Research

Conference of the South African Institute of Computer

Scientists and Information Technologists, 141-149.

31

Computer Science Students Making Games: A Study on

Skill Gaps and Requirement
Jussi Kasurinen

Lappeenranta University of
Technology
P.O. Box 20

FI-53851 Lappeenranta, FINLAND
+358 400 213 864

jussi.kasurinen@lut.fi

Saeed Mirzaeifar
Lappeenranta University of

Technology
P.O. Box 20

FI-53851 Lappeenranta, FINLAND

saeed.mirzaeifar@lut.fi

Uolevi Nikula
Lappeenranta University of

Technology
P.O. Box 20

FI-53851 Lappeenranta, FINLAND
+358 40 559 1374

uolevi.nikula@lut.fi

ABSTRACT

Computer science (CS) is a field of practical and scientific

approach on computation and applications. Consequently, the CS

students should be able to adjust to develop different types of

software applications. However, even though video games are one

type of software, they also impose additional requirements for the

developers. In this paper we present the results of our qualitative

studies on how prepared CS students are to function as game

developers. The paper assesses the knowledge gaps between

students majoring in computer science and game developer needs

in two ways; a longitudinal study on a game development course

and a focused case study on developing a game. Based on our

results there are differences in communication and planning

approaches between the CS students and game developers, and

skill needs for game development content on a traditional

computer science course curricula.

Categories and Subject Descriptors

K.3.2 [Computing Milieux]: Computers and Education –

Computer science education.

General Terms

Experimentation, Human Factors

Keywords

Knowledge gap, game development, computer science, qualitative

study

1. INTRODUCTION
Computer science is a field of practical and scientific study on

computation, and applications made to be used with computer

systems [5]. In this sense, computer science students should be

proficient programmers and software developers. However, the

video game industry is also considered a software business [12],

and even if it has several similar activities as software industry, it

also has separate issues of its own [4].

In this study we observe computer science students in game

development activities to assess and analyze how competent they

are in game development activities. Besides technical competence,

we also assess the working methods and test if there are any

critical knowledge needs in game development that the computer

science curricula does not address. In practice we had two

research questions, “how typical computer science program

prepares students to work in the game development tasks” and

“what topics should be included to a computer science program

to better prepare for game industry needs”.

To approach these research questions we collected student data

from two sources. The first source was a game development

project course held twice in 2012 and 2013, with 43 master’s

level students in computer science along with a comparison group

of 23 professional game developers. The second data collection

method was an in-depth case study within our research group,

done with final year master’s thesis student and post-doctoral

researcher working as a game development team. This study is

also related to our other empirical studies on game and software

development. In this study we apply our previous knowledge on

game and software organizations concerning development tools

[14], development methods [13] and technologies [18].

The rest of the paper is structured as follows: In Section 2 studies

relevant to this paper are discussed and related research is

introduced. In Section 3, the research approach is described and

the main results are introduced in Section 4. Section 5 discusses

the implications and applicability of the results, and the paper is

ended with conclusions in Section 6.

2. RELATED RESEARCH
The common generalization of video game development is that it

is a specialized field of software development [12]. However,

there are studies in which the general knowledge requirements

and connections between software development and game

development have been discussed.

A study by McGill [15] discusses the skill needs from the

viewpoint of games industry, and assesses the knowledge gaps

between industry and academia. The conducted survey assessed

the prioritization of different technologies and process aspects by

comparing the business needs against academic strengths. Based

on the survey, academia mostly met the requirements for

programming languages and frameworks such as C#, Python,

Java, .NET, ASP or Flash, with only minor changes needed to

fulfill the industry expectations. Also based on the McGill survey

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

Koli Calling '13, November 14 - 17 2013, Koli, Finland

Copyright 2013 ACM 978-1-4503-2482-3/13/11…$15.00.

http://dx.doi.org/10.1145/2526968.2526972

32

[15], industry does not rank development process knowledge,

such as software process management, user interface design or

mathematical modeling as high but they are more interested in

pure technical knowledge and experience.

Another view into game development as a software work is

presented by Blow [4]. The development process and knowledge

needs for developing a game product have become more

complicated since early 2000’s, mainly because of increased

computing power allows more advanced design. In addition, game

development has requirements which are unusual in other

business domains; for example development of artificial

intelligence, 3D objects and sound design. However, there are

studies for example by Kanode and Haddad [12] and Petrillo et al.

[17] which indicate that the game development projects are still

similar to software development, and have - if not the same - then

at least similar process problems and challenges.

In education, the applicability of games in software engineering

and computer science education has been studied by Smith et al.

[20]. Their implementation of a game development course applied

agile practices. In the Smith course, largest problems in the actual

development work were related to the communication within the

development team. However, similarly to the Claypool and

Claypool [6] study, the students in computer science program

were capable of designing and implementing game products

without any major obstacles. In fact, the final course outcome for

Claypool and Claypool course [6] was considered a major

improvement against more traditional capstone course. Similar

observations have been also made on other software-related topics

such as design patterns [7] and software architecture [23].

The earlier studies support the conception that computer science

programs offer the required knowledge and skills to develop

games. In our current Computer Science (CS) program education

is offered in two levels, Bachelor and Master-levels. The students

in Bachelor’s degree are in one “Computer Science and

Communications Software” program, whereas Master’s level

students can choose from two majors which are “Software

Engineering” and “Intelligent Computing”. The structure of the

Bachelor’s degree program is presented in Table 1. The contents

of both the degree programs have been validated against the

ACM/IEEE Computer Science curricula [11] and accredited by

ASIIN in 2012 [1]. The learning objectives of the Bachelor’s

program are listed in Table 2.

In the Master’s level program, the students select a major from

communication software, intelligent computing, or software

engineering. Majority of the Master’s degree program is

composed of selected major topic courses (72 credits out of 120),

more minor topic courses (20 credits), shared courses between

Master’s programs (18 credits) and freely selected additional

courses (10 credits). Overall, the program content-wise expands

and elaborates on the Bachelor’s degree program, and is

something that could be characterized as a “typical” computer

science program. Based on the related research, it can be expected

that there should be no problems on the technical aspects of

computer science students and game development. Implication

from earlier studies [for example 6, 7, 23] and ASIIN certification

objectives indicate that the Master’s level students should be able

to design, construct and do basic quality assurance work on game

software without any major obstacles or problems. However, even

if the games are seen as software constructs [4, 12], they still have

some content such as graphics and audio which is quite unusual

for a software product, so there is a valid reason for assessing the

possible skill gaps of computer science students in game

development work.

Table 2: CS program Bachelor-level objectives by

ASIIN

 Objective: The graduates

1 Understand basic principles of scientific thinking and

working.

2 Have basic skills in mathematics and natural sciences.

3 Have basic skills in computer science and programming.

4 Can solve problems with self-made computer programs.

5 Can describe and solve problems using software

engineering techniques and methods.

6 Can solve data communication problems using various

communication networks and different communication

patterns.

7 Know the basic principles of intelligent computing.

8 Are capable of independent study and are ready for life-

long learning.

9 Can participate in software projects using the acquired

knowledge and technical skills.

10 Can work as a part of project team communicating in

writing and verbally both in English and own language.

Table 1: CS program Bachelor-level course structure

Study

Credits

Course name or topic

22 University-level mathematics (over 7 courses)

14 University-level physics (over 4 courses)

12 Fundamentals of Computer Science (over 3 courses)

10 Fundamentals of Programming (over 2 courses)

7 Fundamentals of Data Communications

5 Data Structures and Algorithms

5 Operating Systems

5 Object-Oriented Programming

10 Software Engineering (over 2 courses)

5 Databases

13 Communication, technical writing and presentation

skills (over 5 courses)

7 User Interfaces and Interface Design

7 Web-based Application Technologies

7 Computer Security

5 Low-level System Programming

5 Fundamentals of Intelligent Computing

10 Bachelor’s degree

20 Selected Minor topic

11 Freely selected courses

33

3. RESEARCH METHOD
The results presented in this paper are based on two sources of

information; course reports from our game development course

held at 2012 and 2013, and from a case study on development of a

game demo conducted at our research laboratory. The general

view on data sources is available as Figure 1 and the general

structure of the game development courses in Table 3.

3.1 Game development courses
The knowledge gaps and the way the computer science students

develop games was first observed in two implementations of a

game development course. The objective of this course was to

design and develop a game within 48 continuous hours, loosely

based on a theme announced at the start of each year’s

development event. The event started on Friday afternoon, and

ended on Sunday. The development event was co-located with a

local Finnish Game Jam event, which itself is part of the Global

Game Jam [9] international game development challenge. All

teams working on the game development course participated also

in the Game Jam.

Before the development event, an orientation lecture was given on

the general game development approaches, including a list of

software tools and environments which could be useful for the

development teams. After the development event, a report on the

development and seminar presentation were required. A summary

of the development course is available in Table 3. For the report,

our research team designed a questionnaire, to which each student

group was expected to answer. These questions included topics

such as how the game was tested, what was the most important

objective for the development, and what the team would do

differently if they had to redo the developed game. For 2013

course we also included some further questions on tool selection

and contents of the design documentation. The full sets of

questions, including the supplementary questions used on the

2013 course, are available at http://www2.it.lut.fi/projects/

SOCES.

For the game development course in 2012 20 Master’s level

students from Computer Science major enrolled, and for the 2013

course 23 Master’s level students enrolled. In addition to the

Master’s level students, additional participants from local

university of applied sciences and local game industry

participated, totaling the number of participants to 38 in 2012 and

54 in 2013. The participants formed in total 20 game project

teams (9 in 2012, 11 in 2013), which for the analysis were divided

into two groups based on the team member backgrounds. The first

group, student teams, were teams where the students from our

Computer Science program were a majority. The second group,

professional teams, were groups in which the majority of

participants were professional game developers, having worked

on at least one development project leading to a published

product, or were working in a game developing company. Team

members which would have fulfilled both criteria – both student

and a professional game developer – were classified as

professional game developers. From our data set, the 2012 course

had four student teams and four professional teams, and 2013

course had 6 student teams and 3 professional teams.

Additionally, three teams (1 in 2012 and 2 in 2013) were not

included in the analysis as they did not fulfill either of the

classification criteria having no majority group or having majority

of other participants than CS students or game developing

professionals.

The course reports were analyzed based on the Grounded Theory

[8] method by Strauss-Corbin [21]. Grounded Theory method is

said to be well-suited for analysis work for identifying

phenomenon, which has multiple factors in human interaction,

organizational aspects and practical work, especially if the studied

phenomena is not well-known or strictly definable [21]. For this

reason we concluded that this approach was appropriate for

analyzing the collected information and observations made on the

development approaches the student and professional teams used.

Besides report, the participating teams were observed in work at

the development event by the researchers, and for the course

reports, teams were requested to give at least a few sentence long

answers per question item. This enabled our research team to

conduct codification, open coding, and selective coding [21]

activities to the data to enable us to compare different teams

(inter-team differences) and types of groups (inter-group

differences) against each other. In open coding, the different

observations made on the teams were collected, and at the same

time axially coded, organized, to categories such as “problems”,

“tool-related issues” or “design method”. Since some of the

course questionnaire items were strongly related, some of the

items were joined during the selective coding to form larger

categories. For example, questions regarding development method

and considerations on applicability of structured processes were

merged, in the same vein as observations on tool selection

Game development

course 2012

Game development

course 2013

In-depth case study

on developing a

game demo

8 teams (4 student,

4 professional)

9 teams (6 student,

3 professional)

Qualitative analysis

of CS student skill

gaps

Figure 1: Data sources on the qualitative study

Table 3: Game development course contents

Course item

Orientation

day

-Lecture on game design and development

by an industry expert (2* 45 min)

-Lecture on general characteristics of game

development, software work and game

industry (2* 45 min)

-Lecture on game development tools (45

min)

Development

event

Continuous 48h development event during

weekend.

Seminar day 20 min presentation and talk on the

developed game, used technologies and

development methods, feedback on results

and methods.

Course

reporting

15 item written questionnaire (25 in 2013)

and report on development event.

34

principles and team background. The actual codification and

analysis work was done using ATLAS.ti software tool [2] and

Excel.

In selective coding, we systematically compared and reviewed the

collected data and analyzed how different teams functioned to

form a bigger picture on how student teams fared against

professional teams. Overall, after the codification process we had

259 codified observations in 16 different categories. For this

study, the quotations are translated to English by the authors when

necessary, since several reports were written in Finnish.

Based on the responses to the questionnaire items and actions

during the development event, our research team was able to

identify areas in which the inter-group differences between

students and professionals were large and consistent enough to

differentiate Computer Science students from experienced game

developers. Based on these areas, the observations were

categorized (observable in Table 4) and main findings were

derived (listed in section 4.2) to explain and discuss how these

two groups worked differently.

3.2 In-depth case study
Besides the collected course reports which focused on differences

between the computer science students and professional game

developers, we studied the compatibility of the local Computer

Science education and game development needs with an

additional in-depth action case study. The objective of the in-

depth case study on game development was to assess the

knowledge requirements for a game developer by recruiting a last

year Master’s thesis student to develop a game for the research

team. Based on the results, the concept was to assess the

encountered problems and knowledge needs of a Computer

Science student during the development in general. For the case

study, the developed game had the following requirements:

· Full 3D environment populated with 3D objects

· 3D characters with animation

· Sound effects for every interaction

· Several playable stages or levels

· Enemy characters with artificial intelligence, interaction

with the player character

· Made with development tools popular with the game

industry, selection based on [14]

In general, these requirements were created to reflect the

requirements of a real, commercial grade game demo. Besides the

Master’s thesis student working as a game developer, one post-

doctoral researcher acted as a project manager, steering the

development and ensuring that the requirements were satisfactory

fulfilled by having weekly progress reviews and test sessions. The

usability aspects and general results were also tested with random

test users in one open door event. Overall, six months was

reserved for the design, development, testing and reporting work,

from which four months were used in the game development

activities and two months in reporting the findings and finalizing

the Master’s thesis.

The student working as a game developer was selected from a

pool of applicants for the open vacancy at the project. The

suitable candidate was selected based on the previous course

records and work history. The selected candidate had good course

history (4,5 average on scale of 0-5 with 5 being best grade) and

more than a year of experience as a software developer for non-

game-related software company.

4. RESULTS
In this section we present the results of our two analyses. First, we

discuss the categorized observations and main findings made from

the game development course based on the Grounded Theory

analysis. Secondly, we discuss the in-depth case study and finally,

in the implications the combined results are presented.

4.1 Observations from courses
Based on the 17 game course reports and observations made

during the development event, we were able to identify seven

categories, which focus on the differences between the student

groups and the professional developers. Based on these

categorized observations, we were able to derive four main

findings, which summarize and explain the differences between

the students and the professionals. The categorized observations

are summarized in Table 4, with student teams being the teams S1

to S10, and professional teams being the teams P1 to P7.

The category Amount of design describes the amount of design

work the group did before starting implementation. The “+”

means that the team created a comprehensive game design

document, with the game features, technical design and overall

gameplay. The “0” means that there was a document, which

summarized at least some of the game design, and “-“ that the

group did only some minor drafts or minutiae before starting the

implementation work.

The category Source of input describes the way the team tested

their game design or collected feedback for their game. Internal

means that the team only used internal sources or did not do any

significant cooperation with people outside the development team.

External implies that the team collected feedback from test users

outside their own team, or actively discussed their design

decisions with peers during design work.

The category Applied tools describes the main development tool

the team used when making their game. Game engine means that

the team applied development tools designed for game

development, such as Unity [22] or Scirra [19]. Programming

language + framework means that team used a programming

language with a suitable framework to enable game development,

such as C++ with Box2D or Python with PyGame. Self made

means that team decided to develop the game directly with some

programming language, constructing all the required libraries and

functions themselves.

The category Most important objective describes the most

important result the developer team was aiming at in their work.

Technically working means that the game demo should be

technically proficient, with all the intended functionalities

working as designed. Game experience means that the focus on

development was on the game content, presentation and

playability. With Game design the final product could be missing

some technical details, or during the development the technical

aspects were redesigned to meet the schedule or ease complexity.

The category How close to original idea denotes how close to the

original idea for game the team got in their final product when

comparing the first design and final game demo. “+” denotes that

the team was basically able to implement their original idea fully

35

or that they only had to do minor revisions to their design. “0”

denotes that the team had to drop some features or large part of

the designed content to meet the deadlines. “-“ denotes that the

team had to either redesign their entire game during the

development, or drop major features or most of the intended

content.

The category Root cause of difficulties describes the most

important thing the team felt was responsible for their

development problems. Tools category includes problems and

restrictions caused by the selected development tools. Talent

denotes that the team felt that they were missing some key talent

in their group, for example in programming, graphics or audio

experience. Programming means that the team felt that the most

restricting part was the programming work, finding bugs in the

game or implementing features the way the team wanted. One

team also named Project management, which denotes that the

team had problems coordinating their effort since part of their

team was working off-site due to unexpected circumstances.

Finally, the category What would do differently? describes the

most important change the team would do to their approach, if

they were to do the same or similar tasks again with the same

team. Tools means that the team would use different tools, or

would try to incorporate their working style more closely to the

features provided by the selected tools. Planning indicates that the

team would do more design and preparation work before starting

the implementation to familiarize themselves with the libraries,

algorithms or generally, make more detailed game design

document before starting the implementation.

4.2 Findings based on game course
Based on the reports and observations made on the student and

professional teams during the game development course, we were

able to define four main factors which differentiate the students

and the professionals from each other. These were the following:

student teams tend to focus on the technical aspects of the game

development, students do not use external knowledge to a large

degree and that overall professional teams communicate more on

Table 4: Observations from game course development teams; student teams in white (S1-10), professional teams in grey

(P1-7)

 Teams Amount

of design

 Source

of input

 Applied tools Most

important

objective

How close

to original

idea

Root cause of

difficulties

 What would

do differently?

S1 + Internal Game engine Technically

working

0 Tools

S2 + Internal Programming

language+framework

Technically

working

+ Programming

S3 0 External Programming

language+framework

Game

experience

0 Tools

S4 0 Internal Game engine Technically

working

- Talent Tools

S5 + Internal Programming

language+framework

Technically

working

0 Talent Planning

S6 0 Internal Programming

language+framework

Technically

working

0 Programming Tools

S7 + External Game engine Game

experience

+ Tools

S8 + Internal Self-made Game

experience

+ Programming Tools

S9 - Internal Self-made Technically

working

- Programming Tools

S10 + External Programming

language+framework

Game

experience

- Planning

P1 + Internal Game engine Technically

working

+ Programming

P2 + External Game engine Game

experience

0 Programming Planning

P3 0 External Programming

language+framework

Game

experience

+

P4 + Internal Programming

language+framework

Game

experience

+ Project

management

Planning

P5 + Internal Game engine Technically

working

0 Talent Planning

P6 0 External Game engine Technically

working

0 Programming Tools

P7 + External Game engine Game

experience

0 Programming Planning

36

their ideas and concepts. Next we shall go through all these

findings in more detail.

4.2.1 Professional teams focus on game mechanics,

student teams on technical aspects
The difference between professional teams and student teams in

the most important development objective was very indicative of

the design mindset the teams had. Majority of the professional

developer teams considered as their most important objective to

get the game experience as good as possible, whereas student

teams were making a system that would fulfill the design

requirements.

“The main goal was to make a game that is easy and fun to

play.” – Team P3

”Our plan was to do something original, nightmarish, Alice in

Wonderland-type fantasy game.” – Team P4

“At first the team decided to create the game with a single level,

with a single goal, and with only the minimum number of

required features such as rotation. After that more advanced

features would be added.” – Team S2

“For us the most important objective was developing the controls

of the game… graphics of the game was secondary issue.” –

Team S4

In two of the professional teams where the aim was not in the

game experience, P1 and P5, the reason for aiming towards

technically working game was that the team did not have actual

programming experience, and the team consisted of only game

designers and artists. Also, Team P5 recognized this as their

biggest problem.

“When you take into account our previous backgrounds with

game programming, [name] being only one who had

programmed as a game developer, [a tool] provided us relatively

good basis to make games.” – Team P1

“Most stuff was easy to implement but hard part was getting them

to work correctly.” – Team P5

4.2.2 Professional teams seek outside opinions
One difference on the way the teams developed their designs and

tested their games was on the use of outsider information.

Similarly as with the focus on game mechanics, professional

teams wanted more external opinions by either discussing their

designs with non-group members, or using non-group members as

their testers.

“The game demo was tested by handing out the prototype to a

group of other participants.” – Team P3

“We tried the game ourselves and also asked other people from

different groups to try our game. After those experiences we

adjusted the game a little.” – Team P6

“Every now and then via network we sent [the current build] to

fellow developers and a couple other interested parties, from

where we also got some testing feedback.” –Team P7

In several cases (S2, S5, S8, S9) the student team tested their

game only by doing unit testing or play testing themselves. Most

student teams considered that the 48 hour deadline was too

restrictive to actually focus on usability or game experience

aspects. Instead of play testing with non-group members, some of

the student teams such as S5 and S7 focused on fine-tuning the

technical solutions of their product.

“We tested our game by playing it. Every time we added new

features, we tested them in game. In final stages we also checked

if there were any memory leaks and tried to fix them.” – Team S5

“The fact that one of our mobile testing devices was of older

technology with less computing capabilities, helped us identify

performance bottlenecks in less powerful devices. We managed to

overcome those with profiling tests and code optimization where

needed.” – Team S7

4.2.3 Professional teams and students would

improve different things for the second project
The most common solution to the problems with student teams

was seen either in the technology or tools. For example, teams S2,

S4, S5 and S7 had problems with the selected technology, with

either the intended controlling scheme being uncooperative, or the

external system libraries having problems related to the intended

usage.

“The performance of [external library] is a greatly restricting

feature. Liquid simulation itself should be completely recreated as

well as the engine behind the whole game.” – Team S2

“We probably wouldn't base the collision engine on a matrix.

Some better method for version management might also be in

place.” – Team S5

“If we [were to make another game], we will definitely use

development tools, with which we have some experience. Maybe

we will try to make some Linux or multiple platform game using

SDL + OpenGL.” – Team S4

“Some other programming language or tool could be used

straight from the beginning to allow better distribution and user

base coverage.” – Team S 8

4.2.4 Professional teams used domain-specific tools,

student teams programming languages with

frameworks
The teams were also divided based on the tool selection principles

they applied. The student teams were more eager to work directly

with a programming language, whereas professional teams applied

more sophisticated tools. This approach also went beyond the

reasonable expectations of experience with the game-development

specific tools; some student teams actually rejected the idea of full

game engine to gain “more control” over the technical aspects:

“The main disadvantage with advanced game engines is that,

even though usually designed to be simple to use, often they

require quite a bit of time to be grasped to the level where you

could fluently create the kind of results you could achieve with a

traditional graphics library and programming language

combination. Also, programming your own game engine from a

scratch gives you total control over the game.” – Team S8

“We preferred to use traditional tools and libraries because we

wanted to start game programming from the basics.” – Team S5

4.3 Observations from the case study
The in-depth case study on game development knowledge needs

was conducted between the first and second implementation of the

game development course. The aim of this in-depth case study

was to assess the skills gaps of our computer science students and

our degree structure, when presented with the task of creating a

reasonably modern video game. As a result, one last year

Master’s thesis student spent four months working on a game

development project, with one post-doctoral researcher working

37

as a project manager, steering the development work and ensuring

that the requirements were met in each category.

Based on the case study, most of the development time was spent

on the development of 3D art and learning the development tools.

Third most time consuming task was quality assurance – testing –

to ensure that all of the implemented features worked and that the

requirements set for the project were fulfilled. On Table 5 is a

summary of all the working hours spent on different activities.

The game development took 655 hours, approximately 18 weeks’

worth of effort (See Table 5). Half of the effort (game mechanics,

content design, 3D artwork, and audio work, total of 330 hours)

was spent on tasks that were not covered directly in any of the

student’s previous courses. Rest of the tasks such as planning,

project management, development and testing work, were

comparable or at least partially covered in the topics taught at

some point during the studies. Overall, during the game

development we identified following problems:

· Unfamiliar tools: The tools used in the game

development project were significantly different from

“normal” software development tools, so earlier

experience on software development with their IDE

tools was not applicable.

· Too ambitious project plan: The original project

schedule and plan were too ambitious to be

implementable as is, and was tuned down to match

deadlines for example by cutting activities like

acquisition of outsourced assets and user testing to a

minimum.

· Skill gaps in development: In programming work, the

previously acquired knowledge related to collision

detection, artificial intelligence and 3D vector

mathematics provided to be insufficient.

· New knowledge requirements: Earlier courses provide

no support on game development-focused topics such as

sound engineering or working with 3D models.

4.4 Implications
The conducted two studies gave our research group data on how

capable our computer science students are as game developers.

Similarly as in the related research studies [for example 6, 20 etc.]

the students were able to develop games as course project work.

However, there were some differences between the approaches

student groups took on development work when compared with

professional teams, and in addition, some knowledge gaps were

identified in the in-depth case study.

Based on the game development course findings, the students

focused heavily on technical details and followed the original

design, whereas professional teams made changes to the design if

they encountered too many issues. In fact, two student teams (S4

and S9) spent most of their development time tackling technical

difficulties imposed on them by their original plan and idea.

Similarly to making changes to the design, professional teams

were more willing to modify their work based on external

feedback, and used external feedback to a larger extent. In testing

work, many professional teams (P2, P3, P6, P7) applied user

testing to try out their ideas whereas only one student team did

that. Supporting the notion of students focusing on technical

issues, two student teams (S5 and S7) focused on finding

performance issues with memory management and algorithms.

On the tool side, student teams preferred programming languages

with some suitable frameworks, although there are explanations

for this behavior. Even though the game engine-based IDE tools

were introduced to students, based on the in-depth case study it

can be argued that the students did not have enough experience to

use them effectively or at least they chose to stay with the more

familiar tools. Some student teams (S5, S8) chose to use

programming languages to gain more control over the entire

system, and several student teams (S4, S6, S8, S9) considered that

they should change their tools, but not necessarily towards game-

oriented development tools.

As for the research questions, it seems that there are gaps in the

acquired skills our Computer Science students have. Based on our

observations our current computer science program does not

have enough support for more game-oriented topics such as 3D

mathematics, game-related algorithms or audio work. In

addition, when developing games the students do not

communicate as much as professional developers and their

project effort tends to focus on technical aspects. In general, the

students seemed to focus too much on their first design and get

stuck on technical issues caused by that design, whereas game

developers made changes based on feedback on the practical

issues of the game development work. Additionally, based on our

in-depth case study, after completing most of our Master’s

program studies, our student had acquired about half of the skills

(measured in working hours) required for developing games with

modern tools. In general, four major shortages in the current

Computer Science program and program recommendations were

observed: 1) the tools for professional game development differ

significantly from “normal” IDE tools, 2) the current curricula

does not offer enough experience on some topics such as artificial

intelligence, 3) the current curricula is missing game

development-related topics such as 3D modeling and finally, 4)

approximately half of the game development effort is spent on

activities which are not covered in the “traditional” Computer

Science curricula.

In summary, to develop the Computer Science program towards

the viewpoints of game development, following topics should be

Table 5: Working hours spent on different game

development activities

Task Hours Description

Planning 30h Project management, game

design

Game

mechanics

38h Game design, 2D design,

texture work

Content design 42h Level design, construction

of maps

3D artwork 215h Development of own 3D

objects, modification of

freely available objects

Development 165h Development work with the

game engine.

Audio work 35h All audio and sound effect

related tasks

Quality

assurance

130h Testing

38

addressed in more detail: game-related mathematics and

algorithms such as artificial intelligence and vector mathematics,

3D object design, audio work, and communication and team

working skills, especially during design and testing.

5. DISCUSSION
The results of this study indicate that there are skill gaps and

course needs which could bridge the differences between what is

taught in our Master’s level Computer Science program and what

skills game developers need in general. Our program can be

characterized as “typical” Computer Science program, and when

compared to general recommendations such as ACM/IEEE CS

curricula [11] it has no obvious needs or shortcomings, but still

our reports indicate that to accommodate game development to

our curricula, we should expand our course offerings. Considering

the type of observed skill gaps, it would seem probable that these

same skill gaps in general exist in Computer Science curricula, if

no action to address game development needs is taken. This

finding is not a big surprise but supports the need to develop own

curricula for game developers as has been done in England [10].

In their definition project planning, programming and testing,

which are part of typical Computer Science curricula, cover less

than half of the recommended topics. Besides them, focus on

topics such as game design, graphical skills, audio work and

business studies are recommended for IT students aiming towards

game industry.

It should also be remembered that the Computer Science students

in this study were introduced to game development tools during

the orientation lecture. Some of the student groups made the

decision to apply basic programming language with framework

mostly because they wanted more control over the low-level

technical aspects. Similarly the technical mindset was present in

the testing practices; student teams focused on internal testing

work and technical aspects instead of playability or testing how

“fun” the game design was. Overall, when compared to

professionals the student teams were not very keen to adopt ideas

originating outside their project team at any phase.

There are threats that should be acknowledged when addressing

the validity of qualitative research approaches [24]. For example,

reliability and validity in qualitative research are not the same as

in quantitative research such as surveys, so they should be

explained in more detail to put the results and observations

presented in the study into a context. For example, Onwuegbuzie

and Leech list several threats in qualitative studies and approaches

to qualitative data analysis that can affect the results [16].

According to their study, the most common and severe threat is

personal bias meaning that the researchers apply their personal

opinions, knowledge, and believes in the data analysis,

disregarding the patterns and observations which do not fit or

support their own theories. Obviously this can affect the data

collection and analysis, and in worst case scenario make the study

unreliable [16]. In this study these risks have been taken into

account when planning and implementing the study with several

actions. First of all, the study questionnaires were designed by

four researchers to avoid personal bias on the questionnaires; the

data collection was conducted via email to prevent affecting the

report contents or leading the interviewed game development

groups. Finally, the analysis was validated by three researchers to

assure that the reported findings represent the collected data.

Assessing the in-depth case study results is a separate issue. First

of all, one case study obviously is not enough for conclusive

study, but the results are indicative for development needs. The

Master’s thesis student conducting the case study was not a

graduate from our Bachelor’s program, but from another

university, so the Bachelor’s level curriculum does not really

apply. However, the student had completed Bachelor’s degree on

Computer Science, so the domain was the same, even if there

were small differences in detailed course structure. In addition,

the student was on final stages of our Master’s level program, and

also had a high average grade (4,5 on scale 0-5 where 5 is the best

grade), with work experience from software industry from a large

international non-game company. Based on this background, it

can be assumed that the student had representative computer

science skills, even exceeding those of an average Master’s thesis

student. In any case, considering the general nature of the

observations, the observations are still valid as recommendations

when designing game-related content to the course curricula.

Qualitative studies are always limited to the environment where

the study was conducted. Beyond this environment, the study

results should be regarded as recommendations or suggestions

which can be applied in other context to provide understanding of

their practices [3]. In our case, the in-depth case study and

qualitative analysis results indicate that our current course

contents do not cover game development in all areas, and the

situation could be improved by including the identified skill gaps

in the voluntary course offerings.

6. CONCLUSIONS
The Computer Science studies should offer enough knowledge to

enable the graduates to acclimate themselves to any software

industry they want to. In this sense, the game industry is no

different from other software development fields, since the

students are able to produce games when requested to do so.

However, the game development work has large bodies of content

which are not included in our Master’s Thesis curricula, or in the

ACM recommendations for Computer Science program. In this

paper we presented results from our study on the knowledge and

skill gaps between “a typical” Computer Science program and

game development. The observations were collected from two

implementations of our game development course and one in-

depth case study, analyzed with the Grounded Theory approach.

The results indicate that the observed Computer Science students

had skill gaps in game industry-related content. Students tend to

work towards technology-oriented objectives, and do not use

external sources of information in their design and testing

activities. Computer Science students were also much less likely

to do comprehensive design work before implementation or

change their designs if they encountered problems.

Our case study on developing games revealed that there are topics

and skill gaps which should be addressed in Computer Science

curricula if the objective is to assist graduates into the game

industry. We observed that there are topics such as game-focused

algorithms, sound engineering and 3D object development which

are insufficiently covered or completely missing from our course

contents. In the study, approximately half of the work effort was

spent on the topics which were not covered by the Computer

Science curricula. The design and development of animated three-

dimensional objects alone took one third of the project effort.

For future work, these findings are the basis for recommendations

in the development of Computer Science degree structure, which

also supports game development. The content recommendations

identified in this study are used in the design of additional courses

39

to enable students to more easily adapt to the game industry and

to give content recommendations for our existing courses. For

scientific future work, we will observe how the changes affect the

students participating in the game development courses to assess

and identify the best methods of teaching game development.

7. ACKNOWLEDGMENTS
This study was supported by the European Union Regional

Development Fund projects number A31814, “Kaakon

Peliklusteri” administered by the Council of Southern Karelia and

number A32139 “Game Cluster” administered by the Council of

Päijät-Häme, and by the organizations funding the related

research projects. We would also like to thank all the interviewed

students and representatives of the participating organizations.

8. REFERENCES
[1] ASIIN e.V., 2013. “ASIIN General Criteria for the

Accreditation of Degree Programmes”, referenced 28.3.2013,

available at http://www.asiin-ev.de/

[2] ATLAS.ti: The Qualitative Data Analysis Tool,

http://www.atlasti.com/, referenced 19.6.2013.

[3] Birks, M. and Mills, J. “Grounded Theory – A practical

guide”, SAGE Publications Ltd, 2011. ISBN 978-1-84860-

992-1

[4] Blow, J., 2004. Game Development: Harder Than You

Think, Queue, vol. 1, nro. 10, ss. 28–37, February 2004.

[5] Brookshear, J. Glenn, 2005. Computer Science: An overview,

Ninth edition, Pearson International, Addison-Wesley, ISBN

0-321-43445-5.

[6] Claypool, K. and Claypool, M., 2005. Teaching software

engineering through game design. In Proceedings of the 10th

annual SIGCSE conference on Innovation and technology in

computer science education (ITiCSE '05). ACM, New York,

NY, USA, 123-127. DOI=10.1145/1067445.1067482

[7] Gestwicki, P. and Sun., F-S., 2008. Teaching Design Patterns

Through Computer Game Development. J. Educ. Resour.

Comput. 8, 1, Article 2 (March 2008), 22 pages.

DOI=10.1145/1348713.1348715

[8] Glaser, B. and Strauss, A.L., 1967. The Discovery of

Grounded Theory: Strategies for Qualitative Research.

Chicago: Aldine.

[9] Global Game Jam, http://globalgamejam.org/, referenced

19.6.2013.

[10] Ip, B. 2012. Fitting the needs of an industry: An examination

of games design, development, and art courses in the UK.

ACM Trans. Comput. Educ. 12, 2, Article 6 (April 2012), 35

pages

[11] Joint Task Force on Computing Curricula, 2001. Computing

Curricula 2001, Computer Science. IEEE Computer Society

Association for Computing Machinery, Final Report,

15.12.2001. Available at

http://www.acm.org/education/curricula-recommendations

[12] Kanode, C.M. and Haddad, H.M. (2009) “Software

Engineering Challenges in Game Development”, Proc. 2009

Sixth International Conference on Information Technology:

New Generations, 27.-29.4., Las Vegas, USA. DOI:

10.1109/ITNG.2009.74

[13] Kasurinen, J., Laine, R. and Smolander, K., 2013. “How

applicable is ISO/IEC 29110 in Game Software

Development?”, Proc. 14th Int. Conf. on Product-Focused

Software Development and Process Improvement (Profes),

12.-14.6.2013, Paphos, Cyprus.

[14] Kasurinen, J., Strandén, J. and Smolander K., 2013. “What

do Game Developers Expect from Development and Design

Tools?”, Proc. 17th International Conference on Evaluation

and Assessment in Software Engineering (EASE), 14.-

16.04.2013, Porto de Galinhas, Brazil.

[15] McGill, M., 2009. “Defining the expectation gap: a

comparison of industry needs and existing game

development curriculum”, In Proceedings of the 4th

International Conference on Foundations of Digital Games

(FDG '09). ACM, New York, NY, USA, 129-136.

DOI=10.1145/1536513.1536542

[16] Onwuegbuzie, A.J. and Leech, N.L. (2007). “Validity and

Qualitative Research: An Oxymoron?”, Quality and

Quantity, Vol 41(2), pages 233-249. DOI: 10.1007/s11135-

006-9000-3.

[17] Petrillo, F., Pimenta, M., Trindade, F. and Dietrich, C.

(2008) “Houston, we have a problem…: A survey of Actual

Problems in Computer Games Development”, Proceedings of

SAC’08, 16.-20.3.2008, Fortaleza, Brazil.

[18] Riungu-Kalliosaari, L., Kasurinen, J. and Smolander, K.,

2013. ”Cloud Services and Cloud Gaming in Game

Development”, accepted for publication in Proc. the IADIS

Game and Entertainment Technologies 2013 (GET 2013),

22.-24.7.2013, Prague, Czech Republic.

[19] Scirra 2; Create Games with Construct 2,

http://www.scirra.com/, referenced 19.6.2013.

[20] Smith, T., Cooper, K.M.L. and Longstreet, C.S., 2011.

Software engineering senior design course: experiences with

agile game development in a capstone project. In

Proceedings of the 1st International Workshop on Games

and Software Engineering (GAS '11). ACM, New York, NY,

USA, 9-12. DOI=10.1145/1984674.1984679

[21] Strauss, A. and Corbin J., 1990. Basics of Qualitative

Research: Grounded Theory Procedures and Techniques.

SAGE Publications, Newbury Park, CA, USA.

[22] Unity – Game Engine, http://unity3d.com, referenced

19.6.2013.

[23] Wang, A.I., 2011. Extensive Evaluation of Using a Game

Project in a Software Architecture Course. Trans. Comput.

Educ. 11, 1, Article 5 (February 2011), 28 pages.

DOI=1921607.1921612

[24] Whittemore, R., Chase, S.K. and Mandle, C.L., 2001.

Validity in Qualitative Research, Qual Health Res, July

2001, 11: 522-537, doi:10.1177/104973201129119299

40

Alternate Reality Games for Computer Science Education

Lasse Hakulinen
Department of Computer Science and Engineering

Aalto University
Finland

lasse.hakulinen@aalto.fi

ABSTRACT
Alternate reality games (ARG) are games that often blur
the boundaries of reality and fiction. They use many differ-
ent types of media to deliver an interactive narrative to the
players and include puzzles that are part of a bigger quest
that the players are trying to solve. They are not widely
used in education and there is limited amount of research
done considering their benefits to learning. However, espe-
cially some commercial entertainment ARGs have managed
to engage people in collaborative problem solving very well.
Therefore, benefits and issues of using ARGs in education,
and especially in computer science education (CSE), are dis-
cussed in this paper. Alternate reality games could poten-
tially be used to teach various computer science concepts, to
enable student networking, and to promote computer science
programs. A case study was conducted in order to research
the potential of using alternate reality games in computer
science education. The research of the case study is still in
progress, but the preliminary results are promising. There-
fore, we want to raise discussion of using alternate reality
games in computer science education.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer science education

General Terms
Human Factors

Keywords
Alternate reality games, serious games, game-based learn-
ing, collaborative learning, computer science education

1. INTRODUCTION
Alternate reality games (ARG) are games that deliver an

interactive narrative to the players using different types of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Koli Calling ’13, November 14 - 17 2013, Koli, Finland
Copyright 2013 ACM 978-1-4503-2482-3/13/11 ...$15.00
http://dx.doi.org/10.1145/2526968.2526973.

media. They often consist of puzzles and challenges that are
part of a bigger quest that the players are trying to solve.
The puzzles can be very challenging and require a wide range
of skills and therefore they often call for collaboration among
players. Typically, ARG participants are actively engaged
in the game and solve difficult tasks collaboratively or indi-
vidually in order to make progress in the game.

Alternate reality games can be seen as a way to combine
voluntary learning, problem-solving, collaboration and even
peer-learning. This offers an opportunity for educators to
use ARGs to engage students in learning tasks. There are
some examples of ARGs that have been developed for ed-
ucational purposes but clearly the opportunity is not fully
exploited. Moreover, research done on the educational pos-
sibilities of ARGs is limited and the need for further studies
is indicated in the literature.

Alternate reality games have some similarities to other
approaches used in computer science education (CSE) and
they could be a motivating way for some students to learn
and practice computer science skills. Ideally, ARGs could be
used to enrich computer science education and to offer par-
ticipants different learning experiences than other teaching
methods can offer. However, integrating them to teaching is
not a trivial task and more experience and research is needed
about effective practices of using ARGs in computing edu-
cation.

This paper presents an overview of alternate reality games
and discusses their use in education. Moreover, their suit-
ability and potential to computer science education is dis-
cussed. We also introduce a work-in-progress case study of a
computer science ARG and some preliminary results of the
research.

2. RELATED WORK
Serious games are games that have also other objectives

than pure entertainment [22] and they are being used in
various ways in computer science (CS) education. Program-
ming assignments are a natural way to involve games in CS
education and there are many examples of using games in
programming courses. Leutenegger and Edgington [17] de-
scribe the use of 2D game development as a unifying theme
in introductory programming and they state that game pro-
gramming motivates most new programmers. Decker et
al. [7] used the implementation of a game as a capstone
assignment for CS1 course and Kurkovsky [15] describes the
use of mobile game development projects in CS1 and CS2.
Moreover, Kurkovsky argues that mobile games are simpler
than computer games and therefore they are better suited

41

for introductory programming.
Kazimoglu et al. [13] argue that current serious games

that are specifically developed for learning programming do
not consider a deep gameplay for developing computational
thinking skills. To address this problem, they describe a
serious game called Program your robot. The game enables
students to practice introductory programming constructs
within an environment that supports the acquisition of com-
putational thinking skills, such as: algorithm building, de-
bugging, and simulation.

Wallace et al. [32] grouped the use of games in CS educa-
tion based on how the games facilitate the learning process.
They report that most commonly games are used in a way
where students need to implement computer games or write
programs related to the game. Scenarios where students
learn by playing a game, as opposite to implementing it, are
far less common. Nevertheless, there are examples of using
serious games in CSE in a way where students learn by play-
ing a game and not by implementing it. Shabanah et al. [25]
describe games that can be used to teach algorithms. In the
games, players need to simulate the functionality of an algo-
rithm in order to proceed to the next level. Schäfer et al. [24]
describe a game-based multitouch learning environment for
practicing mathematical logic for CS education.

Serious games are often associated with computer games
but there are examples of non-computer games used in CS
education as well. Hamey [11] used a game with envelopes,
papers and key tokens when teaching secure communication
protocols. Hakulinen [10] describes the use of card games to
teach sorting algorithms and Bell et al. [3] introduce com-
puter science concepts by using games and other activities
in Computer Science Unplugged.

2.1 Alternate Reality Games
Alternate reality games (ARG) is a relatively new genre of

games. Typically, they involve online puzzles as well as loca-
tion based real world challenges that the players are solving
together. ARGs use different media creatively and interact
with the players letting the game evolve in real time. A pop-
ular ARG community called Unfiction describes ARGs as:
”interactive fusion of creative writing, puzzle-solving, and
team-building, with a dose of role playing thrown in” [30].

Alternate reality games can be very different by nature
and they lack a concise definition. However, many descrip-
tions of ARGs emphasize their strong relation to the real
world. McGonigal [21] describes ARGs as antiescapist games
and suggests that they are not played to escape real life, but
rather to get more out of it. Kim et al. [14] say that ARGs
are designed to blur the distinction between a player’s ex-
perience in the game world and the real world outside the
game. Szulborski [29] suggests that a successful ARG im-
merses the world of the game into the everyday life of the
player instead of immersing the player into an artificial world
of the game. These descriptions are supported by a central
idea in ARGs called the This Is Not A Game (TINAG) aes-
thetic [20]. TINAG emphasizes the fact that the game does
not represent itself as a game but balances between real life
and fiction.

An alternate reality game can be seen as a collaborative
effort to solve a mystery or a quest in a setting designed
by the organizer of the game, called a puppetmaster. The
tasks needed to make progress in the game can vary between
different ARGs but typically involve puzzle-like assignments

that may require collaboration and deep knowledge on the
subject. ARGs also involve fictional game characters that
the players are able to interact with and impact the narra-
tive of the game. In order to blur the border between the
game and real life, ARGs often use media that is already
common for the players, for example: email, social media,
phone calls, and blogs, instead of having dedicated commu-
nication channels implemented for the game only. Hence,
alternate reality games can be perceived as games that inte-
grate to players’ real lives letting the players to become part
of the game.

One of the first successful ARGs was a game called The
Beast that was created to market the movie Artificial Intelli-
gence [14]. The Beast succeeded very well in enticing players
to collaborative puzzle-solving and had an estimated three
million unique visitors to the game website. Another well
known ARG, I love bees, was developed as a viral marketing
campaign for the Halo 2 video game [14].

Swedish Television (SVT) succeeded to blur the border
between reality, fiction, and games exceptionally well with
their interactive drama The Truth About Marika [9]. The
idea of the game was based on an accusation that SVT had
stolen the story of the TV series from a young woman’s
blog who was searching her missing friend. Viewers of the
show were lured to solve assignments and post their progress
online in order to solve the ”truth about Marika”. Waern
and Denward [31] researched the game in order to find out
the different participant interpretations of the production.
They found out that as much as 30% of the people who an-
swered the survey reported that they thought that the story
was real. This was a surprise for the game developers as
the most desired answer for the question would have been
”I pretended that it was real”. However, only 24% players
chose that answer. It might seem surprising that the most
desired answer would have been ”I pretended that it was
real”. However, it can be seen as a central characteristic
for alternate reality games and the TINAG aesthetics. Mc-
Gonigal [19] calls it the Pinocchio effect, meaning that the
players choose to pretend that the story is true even thought
they actually know it is fiction.

2.1.1 ARGs in education
Alternate reality games have been mainly used for mar-

keting and promotion of commercial products but they have
been used in education as well. Beer and Holmner [2] report
on using an alternate reality game as a capstone course in
a multimedia post-graduate degree. In the final year of the
studies, students have an opportunity to design an alternate
reality game where they need to apply the knowledge and
technologies they have learned in the previous years of their
studies.

Connolly et al. [5] developed an ARG called Tower of Ba-
bel for language learning. There were 328 students from 28
schools across 17 European countries participating in the
game that lasted for 10 days. They report that, in general,
students’ attitudes towards the game were very positive and
they found it to be a useful way to motivate students in
learning a foreign language.

Whitton [34] describes the Alternate Reality Games for
Orientation, Socialisation and Induction (ARGOSI) project
that was aimed at university students to help them in the
beginning of the studies. The game combined a series of
collaborative challenges within an unfolding storyline. The

42

game was meant to be a mechanism for students to make
friends, orientate themselves to the new area, and to learn
basic information literacy skills. The game had a total of
173 players, 23 of whom were active. The number of active
players was lower than they had expected. However, despite
the limited amount of research data, they were able to con-
clude that the ARGOSI project was successful at creating
and piloting a workable ARG. They also state that, for some
students, the game was an effective and appropriate medium
for meeting the learning outcomes set for it.

3. SUITABILITY FOR EDUCATION
Several authors have highlighted the lack of empirical ev-

idence on using games in education and the limited amount
of studies that analyze the games that have been used in ed-
ucation [5, 4, 26]. The issue of not having empirical evidence
about learning during a game is even greater with alternate
reality games. The whole game genre is new and educational
ARGs are a marginal part of the genre and therefore there
are not many studies done about the effects of educational
alternate reality games.

When thinking of including an ARG to education, it is
important to acknowledge the purpose of the game and the
potential target audience. Whitton [33] states that ARGs
generally appeal to a small proportion of the population,
but those who do become involved, typically are extremely
engaged in the game. Whitton’s statement suggests that
ARGs could be effective as an alternative way of learning
for those who become engaged in the game. However, if the
majority of students are not engaged in the game, it is not
suitable for a compulsory assignment.

Moseley [23] presents several features that ARGs offer and
which would be beneficial in educational contexts to increase
engagement, problem solving skills and communities of prac-
tice within the subject:

• ARGs involve problem solving at varying levels and
enable students to pick their own starting level and
work up from there.

• The game has a feel of progress and it rewards suc-
cessful participation (e.g. in form of a leaderboard or
a grand prize).

• ARGs involve a narrative that can be used to give a
sense of purpose for the tasks/puzzles and to increase
players’ engagement in the game.

• Players’ actions can have an influence on the outcomes
of the game.

• ARGs can deliver new problems/events regularly in
order to keep players engaged in the game.

• There is a potential for a large and active community
which can also be self-supporting, especially if the sub-
ject of the game is not too narrow.

• ARGs can be based on simple and existing technolo-
gies/media that does not need a big effort to take into
use.

Learner’s motivation towards the learned subject is always
important. Alternate reality games are often completely vol-
untary and finding the initial clue of the game, the rabbit

hole, can sometimes be an achievement in itself. If there are
no external rewards involved in playing the ARG, it is espe-
cially important to make the game motivating to keep the
players engaged in the game and to avoid them from drop-
ping out. Whitton [33] reports six possibly motivational
elements in ARGs that were identified in interviews done in
the ARGOSI project: community, competition, completion,
creativity, narrative, and puzzle-solving. Example imple-
mentations of the motivational elements are shown in Table
1. Malone and Lepper [18] define a taxonomy for intrinsic
motivation for learning and they identify challenge, fantasy
and curiosity as elements that promote intrinsic motivation.
Davies et al. [6] suggest the following guidelines for ARGs
to promote intrinsic motivation by including the elements of
challenge, fantasy and curiosity:

1. The player must be able to tangibly affect the outcome
of the game.

2. There must be an overriding goal/challenge as well as
sub-goals and challenges to the player with positive
and negative utcomes based on their actions.

3. The game must require mental or physical skill.

4. The outcome must be uncertain at the outset.

5. The ARG must require the player to develop strategies
in order to win or succeed.

6. The ARG must offer multiple paths to success.

7. Players must be able to ultimately overcome most ob-
stacles in the game.

Connolly [5] states that collaboration among players forms
a key role in ARGs as players must often work together
when solving puzzles in order to successfully complete the
game. The collaborative nature of ARGs can be seen as an
opportunity to networking but also to peer-learning among
the players. Furthermore, Lee [16] points out that in ARGs,
players act as themselves and ARGs rely on knowledge that
the players possess in real life. She sees that as an advantage
over traditional types of computer games where players help
an avatar to ”learn” skills.

3.1 ARGs and Computer Science Education
Alternate reality games are not a commonly used method

in computer science education but there are similarities to
other methods that are more widely used. Programming
competitions in various forms offer opportunities to prac-
tice programming and problem solving and different online
puzzle resources have a wide range of exercises requiring CS
skills. Moreover, Massive Open Online Courses (MOOCs)
and open learning environments such as Codecademy1 and
Khan Academy2 offer many opportunities to learn computer
science. All these approaches have some similarities with al-
ternate reality games, but none of them cover all the features
that a computer science ARG could have.

Programming competition tasks have many similarities
with the individual puzzles in a computer science ARG and
it seems possible to use programming competition tasks in

1http://www.codecademy.com/
2https://www.khanacademy.org/

43

Table 1: Possibly motivational elements of ARGs [33].

Element Example implementation(s)
Community Collaborative activities, communication tools
Competition Prizes, leaderboard
Completion Overview of complete structure, pieces needing filled in
Creativity Creative challenges that involve making artefacts
Narrative Ongoing storyline that contains a mystery
Puzzle-solving Challenges based on puzzle-solving

a computer science ARG. However, there are also signifi-
cant differences in the overall setting of an ARG and a pro-
gramming contest. Alternate reality games try to increase
the engagement by creating a compelling story and a sense
of bigger purpose rather than providing several non-related
tasks. Furthermore, in ARGs, realizing the actual task is
often part of solving the puzzle.

There are some concepts in computer science that are
beneficial considering educational alternate reality games.
Cryptography and hidden messages are already often used
in ARGs whether it is included in the objectives of the game
or not. The fact that encrypting and hiding messages is a
typical feature in ARGs builds a convenient setting to in-
clude learning goals related to cryptography that can be
easily included in the storyline of the game.

Alternate reality games typically include different puzzles
that need to be solved in order to make progress in the
game. This offers an opportunity to make various puzzles
involving algorithmic thinking, programming and problems
from all areas of computers science. The puzzles can be
similar to tasks used in CS courses or programming compe-
titions but presented in a way that fits to the storyline of
an ARG. Furthermore, the flexible design of alternate real-
ity games makes it easy to include programming and non-
programming puzzles in an ARG depending on the learning
goals of the game.

3.2 Issues
Building a successful alternate reality game for educa-

tional purposes is not an easy task. There are examples
of ARGs that have failed to meet the goals set to them and
sometimes the game has been stopped because of lack of
players before it was played to the completion [28]. Whit-
ton [35] reports on difficulties in engaging students in the
ARGOSI project. Student interviews revealed some reasons
for the low participation rate. Several students would have
been more interested in participating in the game if they
had realized that it would benefit their studies. Whitton
also reports that the steps needed to get started in the game
were not clear to all students and some students would have
wanted an extrinsic motivation to participate.

One of the issues of ARGs in educational sense is that the
common collaboration can decrease the efforts of an indi-
vidual to learn. Karau and Kipling [12] call the tendency
to expend less effort when working collectively than when
working individually as social loafing. Stenros et al. [27]
found out that several players reported about social loafing
in the Conspiracy for good ARG. They interviewed players
after the game and some of them felt that because there
were so many other players solving the puzzles quicker than
them, there were no point in trying to push oneself to solve
them.

The most successful ARGs, in terms of number of play-
ers, have been done for promotion and marketing purposes.
When thinking of educational ARGs, we should learn from
successful entertainment ARGs about keeping players en-
gaged in the game and building a large community of active
players. However, depending on the educational goals of an
ARG, there might be differences in ARGs that are made
for education or for purely entertainment purposes. Whit-
ton [34] states the following four ways in which ARGs for
education are necessarily different from ARGs for entertain-
ment:

1. The ARG aesthetic of this is not a game may not be
appropriate in the context of education as students
needed more support in knowing how to get started
and more motivation for completing the activity.

2. Most students require a clear purpose for taking part
in a game like this, whether it is linked to assessment,
there is a prize or simply a clear link to being able to
help them with their studies. The fact that something
is a game does not appear to be a sufficient motivator
for many busy students.

3. There is a tension between the niche nature of ARGs
and the inclusivity strived for in formal education.
There are also issues of how to make a game acces-
sible without spoiling it for other players.

4. In games where students are asked to meet and work
with others (who can not necessarily be verified as
bona fide students) there are issues of online safety
and duty of care by the institution.

4. CASE: "STOP TOILWORN DIAMOND"
Stop Toilworn Diamond was an alternate reality game

that was held in 2013 as part of research done in Aalto Uni-
versity. The game lasted for 10 weeks and it was not part of
any curriculum. Furthermore, the organizer of the game was
not revealed to the players. Therefore, participating in the
game was totally voluntary and the players were not offered
any external rewards such as study credits or prizes for par-
ticipating. The game was not limited to students of Aalto
University, but was aimed at computer science students as
well as anyone who wanted to participate.

The game was held in order to study the potential of us-
ing alternate reality games in computer science education.
The research about the game is still in progress and the re-
sults are not discussed in this paper in detail. However, the
preliminary results suggest that the game managed to be a
learning platform for some participants. In the feedback
collected after the game, participants reported that they
were able to learn new things or refreshen their knowledge

44

about various computer science concepts, such as: Boolean
algebra, programming, steganography, and graphs. Further-
more, spontaneous discussions about the game in an on-
line discussion forum support the conception of participants
learning during the game. Moreover, the game was able to
reach and engage also people that are not studying or work-
ing in a field related to computer science even though the
content was strongly related to computer science.

The background story of the ARG encouraged players
to solve puzzles in order to decode messages from the fu-
ture that warned about a society-paralyzing LOLCat Apoc-
alypse. The puzzles considered various topics of computer
science but the game was not marketed as anything related
to computer science education. The game was mainly played
online, but it had some location based tasks that required
finding hidden cards from the campus area of Aalto Univer-
sity.

Participants were able to communicate with the game
characters with blog comments, email, and Twitter mes-
sages. There were two main sides in the game:

1. Beth Swillower was the central character who posted
new puzzles to her blog. She worked for a company
called Avecira Solutions, but revealed all information
in her blog and asked for help in revealing the content
of the mysterious messages she was able to get.

2. Avecira Solutions was claimed to be responsible for
the catastrophe that would paralyze the world. The
CEO of the company (Richard Exaltego) was actively
seeking new talented problem solvers and persuated
them to solve puzzles for him.

4.1 Puzzles and Challenges
The game included multiple puzzles of different levels of

difficulty. By solving the puzzles, participants were able to
reveal messages from the future and contribute to the ul-
timate goal of the game to stop the project Toilworn Dia-
mond. Some of the easier puzzles included converting binary
numbers to ASCII characters and some of the more diffi-
cult puzzles required finding a solution to traveling salesman
problem with a given graph. Next, few example puzzles and
challenges from the game are presented.

4.1.1 Example puzzle: QR codes
This puzzle was included in a series of puzzles that in-

volved QR codes. The input of the puzzle is two pictures
that are shown in Figure 1. The correct result of the puz-
zle is a QR code that contains an url for the next puzzle.
The two pictures given as input are created from the origi-
nal QR code. ”Picture 1” (Figure 1a) is created by merging
two adjacent pixels that are on the same row in the original
QR code. If the adjacent pixels are white, the correspond-
ing pixel in Picture 1 is also white. If the adjacent pixels
are black, also the corresponding pixel in Picture 1 is black.
In case the two adjacent pixels are not the same color, the
corresponding pixel in Picture 1 is gray. ”Picture 2” (Figure
1b) is generated similarly but the two adjacent pixels are
taken from a column, not a row.

Creating the correct solution from the two pictures given
as input requires problem solving and programming skills as
well as some understanding of QR codes. The resulting QR
code can be reformatted by reading one pixel at a time from
both images. However, in case there are gray pixels in both

(a) Picture 1 (b) Picture 2

Figure 1: Input pictures for the QR puzzle

pictures, colors of the original pixels can not be determined.
Nevertheless, the QR code has some tolerance for error, and
trying different possible combinations will give the correct
message in a reasonable time with these input images.

4.1.2 Location based clues
The game contained also some location based tasks. The

players needed to find two cards hidden in campus area in
order to reveal a message that was encoded in them. One
of the cards is shown in Figure 2. Each character of the
message was represented as a binary number based on the
ASCII value of the character. The binary numbers could be
read from the cards by putting one card on top of the other
and looking at the positions of the common holes.

4.1.3 Face modelling challenge
In addition to the puzzles that needed to be solved, Ave-

cira Solutions organized a ”Face modelling challenge” in or-
der to get people to help with their project Toilworn Dia-
mond. The idea of the challenge was to offer ARG play-
ers an interesting open ended task that they could work
on while there were not any unsolved puzzles posted at the
time. However, fitting the challenge to the storyline did not
work very well as the players did not have clear motivation
to participate and help Avecira Solutions by submitting a
solution to the challenge.

The idea of the challenge was to create a face by using 100
ellipses. The model picture of the face was given as well as a
simple example solution to the challenge with the following
hint: ”This is created with some kind of ”Let’s climb the
hill” or ”Hill climbing” method. Unfortunately, the person
who did this didn’t leave us any other information.”.

The players asked for help from a supposedly fired em-
ployee of Avecira Solutions (Hubert Acker) who was able
to provide them some base code for the solution. However,
the players needed to implement the actual algorithm to de-
cide the locations and parameters of the ellipses. The face
challenge got one submission and it is shown in Figure 3.

5. DISCUSSION
Alternate reality games have shown the potential to be

engaging and to be able to motivate people to collaborative
problem solving. On the other hand, some ARGs have had
problems engaging enough people to participate in the game,

45

Figure 2: Cards that were hidden around campus contained
a message coded with holes.

or they have been stopped completely because of lack of
players. The preliminary results of a computer science ARG
called Stop Toilworn Diamond introduced in this paper in-
dicate that alternate reality games could be used to teach
various aspects of computer science and to engage players
with CS tasks even without offering external rewards for
participating.

Getting people to engage in a computer science ARG is
not a trivial task. However, it is a method that could po-
tentially have different advantages than other approaches
used in computer science education. If done successfully,
it could be used to offer new types of learning experiences
and to widen the scope of how serious games are used to
support learning computer science. However, the number of
research done on educational ARGs is limited and therefore
new studies are needed to understand the possibilities and
pitfalls of using alternate reality games in CSE.

Ali and Shubra [1] report that enrollment in computer sci-
ence programs has been facing a steady decline and that it
falls short in meeting employment demands. Alternate re-
ality games could offer a novel way to attack the issue. The
preliminary results of the case study described in this paper
indicate that a computer science ARG can attract people
to participate that are from outside the scope of computer
science education. Computer science programs could poten-
tially be promoted by creating appealing games that involve
puzzles from wide range of computer science topics. Ide-
ally, this kind of games could break some preconceptions of

Figure 3: An ARG player’s submission to the face modelling
challenge.

computer science and showcase different CS concepts in an
appealing way.

Dena [8] describes how the theory of tiering can be used in
alternate reality games to provide different content to dif-
ferent audiences. She explains typical tier types in ARGs
and how players can experience the same game in various
different ways and levels of engagement. Alternate reality
games could be used to offer participants CS tasks in dif-
ferent levels of abstraction and difficulty. This could enable
people with different backgrounds and skills to participate
together in the game and learn from each other.

Kazimoglu [13] argues that current serious games that are
developed specifically for learning programming do not con-
sider a deep game-play for developing computational think-
ing skills. ARGs could address the shortcoming stated by
Kazimoglu. The flexible design of ARGs enables game cre-
ators to include all kind of puzzles to the game while still
having the overall motivational elements described in Chap-
ter 3. Puzzles in a CS ARG are not limited to programming
tasks and they could be designed to emphasize computa-
tional thinking skills.

One characteristics of an ARG is that the puzzles and
the story are often discussed online bringing people together
from all over the world. Creating a CS ARG that would be
marketed in different universities around the world could po-
tentially be used to enable student networking. The game
could also encourage collaboration between students in dif-
ferent universities by hiding some puzzle pieces in different
campus areas and requiring the participants to gather and
share information in order to solve puzzles.

In addition to the collaboration between students in dif-
ferent universities, a CS ARG could be used to enhance net-
working in a broader sense. By creating content that appeals

46

to people with different competence levels of computer sci-
ence, the game could attract people from the industry as
well as people from high schools. Furthermore, by expand-
ing the content of the ARG beyond computer science, the
game could promote cross disciplinary networking.

Another way to use ARGs could be to let students design
and implement the puzzles required for the game. Providing
an opportunity to create puzzles where students can apply
knowledge from their earlier studies could be a motivating
way to refreshen and deepen understanding in the subjects.
Moreover, creating the puzzles could be more easily inte-
grated to a course, and possibly assessed, than just playing
an ARG.

Balancing with the educational objectives and the free
nature of ARGs can be problematic when thinking of ways
to integrate ARGs in education. Whitton [34] listed differ-
ences between educational ARGs and entertainment ARGs
that were described in Chapter 3.2. She states that the This
Is Not A Game aesthetic may not be appropriate in educa-
tional context as students need more support in knowing
how to get started and motivation to complete the game. In
many educational ARGs, the TINAG aesthetic is not fully
included in the game. It might be that the game is officially
launched as a part of a course and it might be a manda-
tory part of students’ studies. The situation is opposite in
many successful entertainment ARGs. McGonigal, who has
been designing several successful ARGs, describes her own
interpretation on the TINAG aesthetic with a tiger cage
metaphor in the following way: ”Perhaps the central goal
of successful immersive game design is to communicate to
players that a cage is in place, while making it as easy and
likely as possible for the players to pretend that they don’t
see the cage [19]”.

While the need to offer support and motivation to partic-
ipate in the game is present and emerged from the research
on the ARGOSI project [34], it is important to think what
are the best ways to deliver the support and still remain the
aspects that might be engaging to the players. As McGoni-
gal’s tiger cage metaphor suggests, the goal is not to mislead
players, but to make it easy to play along by creating a be-
lievable setting. One problem with the mysterious nature of
ARGs is that it is hard to know beforehand if the content
is interesting to a certain player or not. Compromising the
TINAG aesthetic is one option but not the only one. Having
clues early in the game about the general topic is one way
to entice potential players to the game. Moreover, making it
apparent that the game is aimed at certain group of people
(i.e. computer science students) could also be used as a hint
about the topic.

Holding to the TINAG aesthetic and the voluntary par-
ticipation makes it difficult to assess the performance of a
single player. Puzzle solving activities in ARGs are often
collaborative what might make it impossible to assess indi-
vidual player’s contribution. Therefore, ARGs may not work
well as a compulsory assignment that needs to be assessed.

In addition to the educational benefits to the players, com-
puter science ARGs could also offer opportunities to research
computer science education. Having a global game with a
large community of players and multiple puzzles covering
different topics of computer science could provide interest-
ing data to researchers in the field of computing education.

Some benefits and possible issues of using alternate reality
games in computer science education have been discussed in

this paper. It is apparent that creating a successful ARG for
CSE is not a trivial task as there are examples of educational
ARGs that have not met the goals set to them. However, the
preliminary results from a CS ARG case study introduced
in this paper indicate that there is potential to use ARGs
in CSE and to attract people outside the computer science
community. Therefore, the following questions are raised to
be discussed in the computing education community:

• Should ARGs be used in computer science education?
(Yes / No / Yes, but...)

• In which role should ARGs be used in computer science
education? (As part of a course / as extra activity /
students creating the content for an ARG)

• What could be the benefits of a CS ARG? (Learning
/ networking / promoting CS)

• What value could ARGs bring to CSE research?

6. REFERENCES
[1] A. Ali and C. Shubra. Efforts to reverse the trend of

enrollment decline in computer science programs. The
Journal of Issues in Informing Science and
Information Technology, 7:209–225, 2010.

[2] K. d. Beer and M. Holmner. The design of an
alternate reality game as capstone course in a
multimedia post-graduate degree. In Proceedings of
the 34th IATUL Conference, pages 32–40. Purdue
University, 2013.

[3] T. Bell, I. Witten, and M. Fellows. Computer Science
Unplugged: Off-line Activities and Games for All
Ages. Citeseer, 1998.

[4] T. M. Connolly, M. Stansfield, and T. Hainey. An
application of games-based learning within software
engineering. British Journal of Educational
Technology, 38(3):416–428, 2007.

[5] T. M. Connolly, M. Stansfield, and T. Hainey. An
alternate reality game for language learning: Arguing
for multilingual motivation. Computers & Education,
57(1):1389 – 1415, 2011.

[6] R. Davies, R. Krizova, and D. Weiss. emapps. com:
games and mobile technology in learning. Innovative
Approaches for Learning and Knowledge Sharing,
pages 103–110, 2006.

[7] A. Decker, S. Haydanek, and C. Egert. When objects
collide: abstractions over common physics problems
for capstone projects in cs1. Journal of Computer
Sciences in Colleges, 21(2):12–18, Dec. 2005.

[8] C. Dena. Emerging participatory culture practices
player-created tiers in alternate reality games.
Convergence: The International Journal of Research
into New Media Technologies, 14(1):41–57, 2008.

[9] M. Denward and A. Waern. Broadcast culture meets
role-playing culture. In The Book of Solmukohta 2008:
Playground Worlds: Creating and Evaluating
Experiences of Role-Playing Games. Ropecon ry, 2008.

[10] L. Hakulinen. Using serious games in computer science
education. In Proceedings of the 11th Koli Calling
International Conference on Computing Education
Research, Koli Calling ’11, pages 83–88, New York,
NY, USA, 2011. ACM.

47

[11] L. Hamey. Teaching secure communication protocols
using a game representation. In Proceedings of the fifth
Australasian conference on Computing education,
pages 187–196. Citeseer, 2003.

[12] S. J. Karau and K. D. Williams. Social loafing: A
meta-analytic review and theoretical integration.
Journal of personality and social psychology,
65(4):681, 1993.

[13] C. Kazimoglu, M. Kiernan, L. Bacon, and
L. Mackinnon. A serious game for developing
computational thinking and learning introductory
computer programming. Procedia - Social and
Behavioral Sciences, 47:1991 – 1999, 2012.

[14] J. Y. Kim, J. P. Allen, and E. Lee. Alternate reality
gaming. Communications of the ACM, 51(2):36–42,
Feb. 2008.

[15] S. Kurkovsky. Mobile game development: improving
student engagement and motivation in introductory
computing courses. Computer Science Education,
23(2):138–157, 2013.

[16] T. Lee. This is not a game: Alternate reality gaming
and its potential for learning.
http://archive.futurelab.org.uk/resources/publications-
reports-articles/web-articles/Web-Article477. [Online;
accessed 18-July-2013].

[17] S. Leutenegger and J. Edgington. A games first
approach to teaching introductory programming. In
Proceedings of the 38th SIGCSE technical symposium
on Computer science education, SIGCSE ’07, pages
115–118, New York, NY, USA, 2007. ACM.

[18] T. Malone and M. Lepper. Making learning fun: A
taxonomy of intrinsic motivations for learning.
Aptitude learning and instruction, 3(3):223–253, 1987.

[19] J. McGonigal. A real little game: The performance of
belief in pervasive play. Level Up, 2003.

[20] J. McGonigal. This is not a game: Immersive
aesthetics and collective play. In Melbourne DAC 2003
Streamingworlds Conference Proceedings. Citeseer,
2003.

[21] J. McGonigal. Reality is broken: Why games make us
better and how they can change the world. Penguin Pr,
2011.

[22] D. R. Michael and S. L. Chen. Serious Games: Games
That Educate, Train, and Inform. Muska &
Lipman/Premier-Trade, 2005.

[23] A. Moseley. An alternative reality for higher
education? lessons to be learned from online reality
games. In ALT-C 2008, 2008.

[24] A. Schäfer, J. Holz, T. Leonhardt, U. Schroeder,
P. Brauner, and M. Ziefle. From boring to scoring - a
collaborative serious game for learning and practicing
mathematical logic for computer science education.
Computer Science Education, 23(2):87–111, 2013.

[25] S. Shabanah, J. Chen, H. Wechsler, D. Carr, and
E. Wegman. Designing computer games to teach
algorithms. In 2010 Seventh International Conference
on Information Technology, pages 1119–1126. IEEE,
2010.

[26] K. Squire. Cultural framing of computer/video games.
Game studies, 2(1):90, 2002.

[27] J. Stenros, J. Holopainen, A. Waern, M. Montola, and

E. Ollila. Narrative friction in alternate reality games:
Design insights from conspiracy for good. In
Proceedings of DiGRA 2011 Conference: Think Design
Play, Utrecht, The Netherlands. DiGRA, 2011.

[28] E. Sylvan, J. Larsen, J. Asbell-Clarke, and
T. Edwards. The canary’s not dead, it’s just resting:
The productive failure of a science-based
augmented-reality game. In Proceedings of
Games+Learning+Society 8.0, GLS 8.0, pages 31–37.
ETC Press, 2012.

[29] D. Szulborski. This is not a game: A guide to alternate
reality gaming. New-Fiction Publishing, 2005.

[30] Unfiction, Alternate Reality Gaming.
http://www.unfiction.com/history/. [Online; accessed
10-July-2013].

[31] A. Waern and M. Denward. On the edge of reality:
Reality fiction in ’sanningen om marika’. Breaking
New Ground: Innovation in Games, Play, Practice
and Theory. Proceedings of DiGRA, 2009.

[32] S. Wallace, R. McCartney, and I. Russell. Games and
machine learning: a powerful combination in an
artificial intelligence course. Computer Science
Education, 20(1):17–36, 2010.

[33] N. Whitton. Alternate reality games for developing
student autonomy and peer learning. In Proceedings of
the LICK 2008 Symposium, pages 32–40. Napier
University / TESEP, 2008.

[34] N. Whitton. Alternate Reality Games for Orientation,
Socialisation and Induction (ARGOSI), 2009.

[35] N. Whitton. Encouraging engagement in game-based
learning. International Journal of Game-Based
Learning (IJGBL), 1(1):75–84, 2011.

48

How to Study Programming on Mobile Touch Devices –
Interactive Python Code Exercises

Petri Ihantola, Juha Helminen, and Ville Karavirta
Department of Computer Science and Engineering

Aalto University
Finland

petri.ihantola@aalto.fi, juha.helminen@aalto.fi, ville@villekaravirta.com

ABSTRACT
Scaffolded learning tasks where programs are constructed
from predefined code fragments by dragging and dropping
them (i.e. Parsons problems) are well suited to mobile touch
devices, but quite limited in their applicability. They do not
adequately cater for different approaches to constructing a
program. After studying solutions to automatically assessed
programming exercises, we found out that many different
solutions are composed of a relatively small set of mutually
similar code lines. Thus, they can be constructed by using
the drag-and-drop approach if only it was possible to edit
some small parts of the predefined fragments. Based on this,
we have designed and implemented a new exercise type for
mobile devices that builds on Parsons problems and falls
somewhere between their strict scaffolding and full-blown
coding exercises. In these exercises, we can gradually fade
the scaffolding and allow programs to be constructed more
freely so as not to restrict thinking and limit creativity too
much while still making sure we are able to deploy them to
small-screen mobile devices. In addition to the new concept
and the related implementation, we discuss other possibilities
of how programming could be practiced on mobile devices.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in
Education—Computer-assisted instruction (CAI), Distance
learning ; K.3.2 [Computers and Education]: Computer
and Information Science Education—Computer science edu-
cation

General Terms
Human Factors

Keywords
Programming, Mobile Touch Devices, Python, Teaching, Learn-
ing, Mobile Learning, mLearning, Parsons Puzzle, Parsons
Problem

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Koli Calling ‘13, November 14 – 17 2013, Koli, Finland
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2482-3/13/11 $15.00
http://dx.doi.org/10.1145/2526968.2526974

1. INTRODUCTION
Today, mobile devices are ubiquitous and provide an attrac-

tive platform for consuming all kinds of interactive material
on-the-go. Indeed, these devices also have great potential as
an environment for learning, regardless of time and place.
The challenge is how to effectively create or adapt content to
meet the requirements and overcome the restrictions of this
quite a different learning space. Learning sessions may be
very short in time and sporadic in frequency. Thus, the learn-
ing applications must be able to deliver brief self-contained
learning tasks.

How can mobile devices be used to learn programming?
Such devices can be used for reading tutorials – perhaps
accompanied with some visualizations – but based on pre-
vious research it seems likely that a more active role than
mere viewing would lead to better results [4]. Indeed, some
programming-related online tutorials utilize in-browser pro-
gramming environments where users can experiment without
installing anything extra on their computers (e.g. Runestone
Interactive Python [11] and Learnpython1). Although excel-
lent in desktop environments, the usability of these is lacking
on mobile touch devices where the screen space is limited
and where typing is more challenging as there is no physical
keyboard.

If typing code with touch devices is challenging, then how
can you practice programming? For Windows Phone users
(and as an HTML5 app for many other platforms) there is
TouchDevelop [14] – a programming language and environ-
ment designed explicitly for these devices and where much
of the code is created by tapping through menus. A different,
but related approach would be to use environments where
programs are constructed visually by dragging and dropping
blocks of code. Scratch [9] is a well-known example of this.
So-called Parsons problems (or puzzles), program construc-
tion exercises where the task is to select and arrange code
fragments in order to compose a program that meets some set
requirements, are another example [12]. Here, a code fragment
is typically a single line of code but may comprise multiple
lines as well. If there is no extra code and blocks cannot be
defined on-the-fly, the problem reduces to that of reordering
the code. Most blocks languages as well as TouchDevelop
support only some special programming languages designed
together with the system whereas Parsons problems can be
used to practice any programming language (e.g. Java or
Python).

The existing exercises that are available on mobile touch
devices and deal with programming topics, like the program

1http://www.learnpython.org/

49

http://www.learnpython.org/

construction of Parsons problems, are fairly limited in terms
of what kinds of learning tasks and goals are feasible. For ex-
ample, the existing implementations of Parsons problems do
not allow any modifications to the given code fragments and
thus strongly limit the way programs can be built, and assign-
ments designed. Indeed, it would be useful to have something
that falls between text as input and the immutable blocks of
pre-written code – something that is more akin to the core
task of designing and creating programs instead of merely
reading and answering questions about them, or attempting
to piece one together somewhat like a puzzle. Influenced
by observations from an analysis of students’ submissions
to programming exercises, we designed a new type of ex-
ercise aimed at mobile touch devices. Our approach bears
resemblance to existing work on block-oriented graphical
programming environments but intentionally skews closer to
code as text instead of visual elements. This is in order for
the practice to better benefit and the skills acquired to better
translate to the actual task of writing code in a widely-used
general-purpose programming language (Python).

In this paper, we present the design and implementation
of a new type of exercise as an extension to the MobilePar-
sons [6] learning application for practicing Python program-
ming skills on mobile touch devices. Self-study is facilitated
by the availability of immediate automatic feedback. Further-
more, we also discuss existing solutions and other alternatives
to (learning) programming on mobile devices.

2. DESIGN AND IMPLEMENTATION
Different solutions to a programming assignment can be

the result of using different language constructs. On the other
hand, very similar lines may also lend themselves to different
approaches, as illustrated in Figure 1. The types of lines in
the figure can be used to construct many different kinds of
attempts at solving the problem of finding the largest value,
both correct and incorrect. More precisely, the solutions in
the figure can be constructed from four line types – the sig-
nature line (def find_largest(a,b,c):), if statements (if
VAR CMP-OP VAR:), else statements and return statements
(return VAR), where VAR is either a, b, or c and CMP-OP
is <, <=, >=, or >.

To get a better understanding of this phenomenon, we
examined whether students’ solutions to small programming
exercises could indeed be constructed by selecting lines from
a relatively small pool of lines – the pool of lines being
different for each exercise. To investigate this, we analyzed
all submissions to, in total, 11 small automatically assessed
introductory level Python programming exercises from two
different programming courses. The courses were the first
introductory programming course (CS1) and Web Software
Development (WSD) at Aalto University, Finland. CS1 and
WSD are both large courses with ca. 600 and 150 students,
respectively. In selecting the exercises we considered that we
would like at least some of the solutions to fit on the screen
of a typical touch device when using the MobileParsons
environment. This implies programs of around 10 lines for
handheld devices and 20–25 for tablets.

We only considered the last correct submission for each stu-
dent and searched for sets of common codelines from which
as many students’ solutions as possible could be constructed
with the idea in mind that then these lines could be the
building blocks in the respective Parsons problem. For this,
we went through students’ solutions searching for similar

def f i n d l a r g e s t (a , b , c) :
i f a >= b :

i f a >= c :
return a

i f b >= c :
return b

else :
return c

def f i n d l a r g e s t (a , b , c) :
i f b >= a :

i f b >= c :
return b

i f a >= c :
return a

else :
return c

def f i n d l a r g e s t (a , b , c) :
i f b < a :

i f c < a :
return a

i f c > b :
return c

else :
return b

Figure 1: Different solutions, all based on nested
if-else constructs, to the programming assignment
where the task is to find the largest among the three
arguments given.

lines. We ignored all empty lines and comments, and lumped
together all variable names and string literals. Indeed, with
Parsons problems, we would be able to use some canonical-
ized names for all the occurring variables. Moreover, string
literals could also all be equated because they did not affect
the adherence to the given specifications in any of the exer-
cises but were either debugging code or strings whose actual
phrasing did not matter in terms of the functionality. After
canonicalizing all the lines, we got the set of all lines that
occurred in students’ solutions – one set for each exercise.

In some cases, we were able to identify groups of often used
lines that even after the initial canonicalization were only
slightly different from each other. If in addition to positioning
lines, a user was allowed to reuse and edit some small parts
of the lines, a smaller set of lines could allow a much larger
number of different types of solutions to be constructed. After
that, we processed all the lines so that all identifiers, boolean
literals (i.e. True, False), number literals (e.g. 0.1, 1, and 3),
mathematical operators (i.e. +, -, *, /, and //), comparison
operators (i.e. <, <=, ==, >=, >, and !=), and logical binary
operators (i.e. and and or) were lumped together under an
umbrella term like COMP-OP for a comparison operator.

After the canonicalization, we applied a heuristic search to
find subsets of (editable) lines from where one could select
lines to fully cover as many students’ solutions as possible.

50

For each exercise, we selected the set of lines whose relative
expressive power was best by finding the one where the
number of lines divided by the number of solutions covered
was at its minimum. These are reported in Table 1. Set size
column in the table describes how many lines were needed to
cover n solutions, where n is given in column coverage (c-all).
Although the number of fully covered solutions (line coverage
c-all in the table) is relatively small, it is better than where
we can get with traditional Parsons problems (line coverage
c-id-str in the table). What this means is that having around
11 partly editable lines would allow 46 percent of students’
solutions to assignment CS1 12 to be constructed while this
number of non-editable lines could cover only 15 percent of
the solutions.

Table 1: The number of solutions that could be fully
covered by N prototype lines for both canonicaliza-
tions. N is selected so that the fraction of set size
and coverage with all canonicalizations is at its min-
imum.

set size coverage coverage
(c-all) (c-all) (c-id-str)

CS1 11 10 170 (36%) 140 (29%)
CS1 12 11 209 (46%) 67 (15%)
CS1 21 23 79 (17%) 5 (1%)
CS1 22 26 219 (47%) 54 (12%)
CS1 23 27 206 (49%) 21 (5%)
CS1 31 21 188 (40%) 49 (10%)
CS1 32 19 241 (52%) 86 (19%)
CS1 33 24 83 (20%) 20 (5%)
WSD1 10 46 (31%) 46 (31%)
WSD2 16 27 (18%) 21 (14%)
WSD3 12 14 (11%) 13 (10%)

Implementation
Influenced by our observations, we decided to implement
a new type of Python exercise that allows limited editing
of lines by providing parts where you can toggle (i.e. click
or tap) between alternatives. We implemented this on top
of js-parsons [5], or more precisely its mobile fork called
MobileParsons [6].

In the original MobileParsons, students are to use some of
the code given on the left side (in landscape mode) to build
a program on the right without forgetting appropriate inden-
tation which is significant in Python. Lines are positioned
by drag-and-dropping. An example of an exercise in Mo-
bileParsons is shown in Figure 2. The assignment description
is available in a tab on the left. Similarly, after requesting
feedback, another tab appears on the right which shows the
previously requested feedback.

In the underlying js-parsons, there are two different types
of feedback: line-based and execution-based [2]. The type of
feedback is defined when the exercise is created. Line-based
feedback indicates the lines that should be repositioned. For
this feedback to be possible, there needs to only exist a single
correct arrangement of the given lines. In execution-based
feedback, the code is executed and run against predefined
tests. Feedback is given to the student as failed/passed asser-
tions. Python code is executed in-browser using the Skulpt
library2, a JavaScript implementation of Python. Feedback is
given whenever requested by the student. However, in order

2http://www.skulpt.org/

Figure 2: Example of an assignment in MobilePar-
sons. Line return b is being inserted into the pro-
gram.

to discourage trial-and-error behavior, feedback is automat-
ically disabled for a period of time if used too frequently.
Previously, no execution-based feedback was available in
MobileParsons but this feature was added as part of the ex-
tension we implemented. Figure 3 shows what this feedback
looks like.

Figure 3: Example of execution-based feedback in
MobileParsons.

The main difference between MobileParsons and the new
type of exercise is that in the latter, the given code fragments
can include parts where the learner needs to select a piece of
code from a set of options in order to complete the codeline.
An example of a possible set of editable lines for the previ-
ously described task of finding the largest item of the three
arguments (Figures 1 and 2) is shown in Figure 4. Initially,
the blocks show only the type of the missing content. This is
in order to help learners think about the possible solutions
before starting to change the pieces. We did not want to
make one of the options show by default, as we felt that
would too easily fixate learners on that value. However, when
an exercise is created, a default value can be specified if need
be. Learners interact with the changeable parts of the code
by tapping (or clicking) them. That changes the piece to the
next option. If the prototype lines can be duplicated, this
allows constructing larger solutions with the given selection
of prototype lines. For example, the partial solution shown in
Figure 5 could be constructed from the lines in Figure 4. A
complete example of a partially solved exercise in the mobile
application is shown in Figure 6.

The options for a changeable piece of code can be specified

51

http://www.skulpt.org/

Figure 4: The prototype lines sufficient to solve the
find_largest task in Figure 1. Whereas the task in
Figure 1 has only one correct ordering of the lines,
these prototypes allow constructing multiple correct
solutions.

Figure 5: A partial solution to the example exercise.

Figure 6: A complete example of an exercise with
toggleable parts in MobileParsons.

as a list when creating the exercise. Alternatively, only the
type of the piece can be specified in which case the options are
determined by this. The supported types are boolean (True,
False), comparison operator (<,>,<=, >=,==, ! =), math
operator (+,−, ∗, /), logical binary operator (and, or), and
numeric range. The numeric range is specified as in the form
field type specification of HTML53, that is, with minimum
and maximum values as well as a step used to increase the
value.

3. RELATED TOOLS
In addition to many mobile applications providing textbook-

like static content on programming topics, some also provide
interactive elements such as multiple choice questions, Par-
sons problems, and IDEs designed especially for handheld
devices. In this section, we present examples of these. The
selected examples are skewed towards the Android and iOS

3http://drafts.htmlwg.org/html/master/forms.html

Figure 7: Android default keyboard layout with
three different layout windows. Typing, for example,
foo(a[1]) requires switching between all of these lay-
out screens.

platforms but, in general, there are similar tools available on
other platforms as well.

3.1 Tools for Composing Programs on
Touch Devices

One reason why typing source code with the on-screen key-
boards of touch devices is difficult, is that special characters
such as curly braces and brackets, often used in program-
ming, are hard to access. Thus, several programmer-friendly
soft keyboards have been created. The obvious trade-off is
between having a smaller number of larger keys so that they
are easier to hit and having a larger number of smaller keys in
order to avoid switching between multiple keyboard screens
while typing. The difference is highlighted in Figures 7 and 8
where the former presents the default keyboard layouts on
Android and the latter is the layout provided by an app called
Hacker’s Keyboard4. This keyboard is similar to traditional

4https://play.google.com/store/apps/details?id=org.
pocketworkstation.pckeyboard

52

http://drafts.htmlwg.org/html/master/forms.html
https://play.google.com/store/apps/details?id=org.pocketworkstation.pckeyboard
https://play.google.com/store/apps/details?id=org.pocketworkstation.pckeyboard

Figure 8: Hacker’s Keyboard soft keyboard used in
QPython shell on Android.

keyboards and allows typing many special characters by first
tapping shift and then some other key. Another example of
a keyboard for typing programs – that does not even require
tapping two keys to get the special characters – is shown in
Figure 9 from the Textastic5 text editor for iPad/iPhone. In
Textastic, tapping on the keyboard buttons on top of the
traditional keyboard adds the character in the middle of the
button, whereas swiping the button towards its corners adds
the character displayed in that corner of the button.

Figure 9: Keyboard in the Textastic application on
an iPad.

Features like predictive typing [8] and auto-complete make
typing software on mobile touch devices even easier but
they still do not utilize new interaction methods enabled by
these devices. Despite recent interest (e.g. [3, 10, 13]), most
publicly available mobile programming tools lack natural
interaction [15] mechanisms (e.g. use of gestures). Although
TouchDevelop (Figure 10), makes creating small programs
on mobile devices easier, as they are are created by tapping
through dynamic menus on the screen, it does not support,
let us say, Python.

3.2 Tools for Practicing Programming on
Touch Devices

On the other hand, when practicing programming, being
able to execute and experiment with the code is equally
important as typing code. Correspondingly, there exist many
mobile IDEs, interpreters and compilers for mobile devices.

5https://itunes.apple.com/app/id383577124

QPython6, just like many other similar tools, provides an
editor and an interactive console separately as illustrated in
Figure 8.

Figure 10: A screenshot from HTML5 version of
TouchDevelop on Android.

However, this and other applications like it are designed
for programming in general – not for learning or teaching it.
Aside from native applications, there is still also the Rune-
stone Interactive Python [11] that is an interactive web-based
book for learning Python. As shown in Figure 11, the inter-
active content works on mobile devices as well. Learnpython
is another similar website. It can be used with tablets but
the usability with phone-sized devices is limited.

Figure 11: Example of textual content and a pro-
gram visualization in Interactive Python on an
iPhone.

Although we have built our extension to an environment
designed for Parsons problems, the work we have done can

6https://play.google.com/store/apps/details?id=com.
hipipal.qpyplus

53

https://itunes.apple.com/app/id383577124
https://play.google.com/store/apps/details?id=com.hipipal.qpyplus
https://play.google.com/store/apps/details?id=com.hipipal.qpyplus

also be compared to blocks languages such as the pioneering
BLOX [1] or later Scratch7, Snap8, Blockly, and others. Some
of the latest blocks language environments are browser-based
and thus can be used even on tablets. The screen layout of all
the environments we have tried, however, is such that the tools
are in practice unusable with phone-sized devices (Figure 12
shows an example of Snap on a tablet device). In blocks
languages, the arrangement of code fragments is supported
visually by the jigsaw metaphor where pieces can be linked
together only in certain ways. Languages often allow small
edits to the pieces just like switching through options in our
implementation. Most blocks languages, being fully expressive
programming languages, support more versatile editing of
blocks than what is currently possible in our implementation.
For example, it may be possible to insert an editable block
inside some other blocks.

Figure 12: Example of a program in Snap.

Our work falls somewhere between simple Parsons problem
systems and more complex blocks languages. Both Parsons
problems and blocks languages have been used to lower the
barrier to programming [7, 12]. Our primary goal, however,
has been to bring Python programming tasks with automatic
feedback to mobile touch devices. Nonetheless, the system
we have developed can also be used with browsers on desktop
machines. Closest to what we had on our mind, and what was
already available on a mobile platform, was the SingPath9

mobile environment for simple Parsons problems. An example
of a problem in SingPath is shown in Figure 13. It should be
noted that, unlike js-parsons and MobileParsons, SingPath
automatically indents the added lines correctly.

In addition to the program construction environments,
there exist some quiz applications that deal with program-
ming, for example, the iOS applications Java Quiz10 and
Quiz&Learn Python11. Java Quiz asks questions both about
program behavior and different constructs of the language.

7http://scratch.mit.edu/
8http://snap.berkeley.edu/
9https://itunes.apple.com/us/app/singpath-mobile/
id567470737

10https://itunes.apple.com/app/java-quiz/
id464249097

11http://www.bythemark.com/products/
quiz-learn-python/

Figure 13: Example of a problem in SingPath.

Questions in Quiz&Learn Python are all about the behavior
of short programs. In addition to showing the correct an-
swers, it gives the learner the possibility to step through the
program line-by-line and inspect its behavior.

4. DISCUSSION
There are several aspects of the proposed type of exercise as

well as the whole concept of learning programming on mobile
devices that we would like to see discussed by computing
education researchers and practitioners. In the following, we
raise these questions, as well as provide our own opinions as
a starting point for the discussion.

Is learning programming on mobile touch devices
worth pursuing? If yes, what kinds of tools are
available (or missing) to practice programming on
mobile touch devices? How should mobile learning
tools be integrated into courses? Is it enough for
them to be available for self-study?

Despite some pioneering work to edit source code through
gestures [13], existing programming tools for mobile touch
devices seem to be based on static material, multiple choice
questionnaires, visual (blocks) languages, Parsons problems,
or exporting IDE concepts and environments directly from
desktop environments to the mobile context. Visual editing of
textual source, where our work aims at, seems to be missing.
In addition, combinations of static and interactive content are
also missing. Some browser-based solutions like learnpython
can be used with tablets but are quite difficult to deal with
on phone-sized devices. This kind of combination of easy to
read tutorials accompanied with small exercises is something
that we would like to see on mobile devices in the future.
However, because of sporadic and brief usage sessions, editing
the source code should be faster than where typing with soft
keyboards appears to get us.

Does the proposed type of exercise provide bene-
fits compared to existing systems?

Although our code exercises may allow some freedom while
also making use of interaction methods natural to touch

54

http://scratch.mit.edu/
http://snap.berkeley.edu/
https://itunes.apple.com/us/app/singpath-mobile/id567470737
https://itunes.apple.com/us/app/singpath-mobile/id567470737
https://itunes.apple.com/app/java-quiz/id464249097
https://itunes.apple.com/app/java-quiz/id464249097
http://www.bythemark.com/products/quiz-learn-python/
http://www.bythemark.com/products/quiz-learn-python/

devices – dragging, dropping,and tapping – the approach
still significantly restricts learners’ program implementation
options. Some of this can be educationally justified. For
example, when teaching if-else constructs, it is better to
guide students towards constructing program like in Figure 1,
instead of producing quick one-liners as in Figure 14. When
teaching some specific concepts, we would like to provide
building blocks exactly with those in mind. However, in
some cases the blocks languages approach of being able to
insert blocks inside other elements would help us to produce
exercises that would better match the different solutions
students would create without the restrictions of our system.

def f i n d l a r g e s t (a , b , c) :
return max(a , b , c)

Figure 14: An alternative solution to the program-
ming assignment where the task is to find the largest
the three arguments given.

Indeed, we made the design choice of requiring Python as
the language in our mobile code exercises. While Scratch, for
example, would be an interesting approach to learning pro-
gramming concepts on mobile devices, in order to eliminate
the extra cognitive load of switching between languages, we
preferred an environment that is based on the same language
used in our programming courses anyhow. For our needs, the
blocks language environment would thus have to support
constructing programs in Python. We chose not to make use
of the jigsaw metaphor known from blocks languages. On
the one hand, we wanted to minimize the effort of grasp-
ing additional visual metaphors beyond actual Python code
and programs and, on the other hand, this approach allows
students to create syntactical errors. Adopting the jigsaw
approach to our work would prevent students from doing
and learning from these mistakes. Instead, we give similar
automated feedback that a Python interpreter would when
a student tries to execute the erroneous code.

Finally, in our analysis of students’ submissions, we focused
on the correct solutions in order to examine the variance in
correct implementations. We could also investigate typical
errors by analyzing all submissions and then consider adding
respective erroneous lines in the exercises. Such lines in Par-
sons problems are called distractors. Allowing students to
modify lines, as we have, will in practice create many distrac-
tors and therefore make exercises more difficult. Indeed, if the
goal is to allow different correct solutions, instead of merely
making the exercises more difficult, it should be carefully con-
sidered which modifications are allowed. Informed decision
by the instructor is always a choice. Another is mining the
submissions of automatically assessed programming exercises,
as we did in order to ensure the proposed exercise approach is
meaningful. However, in future research, it might be better to
exclude the solutions of lesser quality instead of using all the
submissions. Thus, although original Parsons problems force
the students to reproduce the teacher’s answer, more research
is needed to understand how toggleable Parsons implemented
in this work affect and how the toggleable values in different
exercises should be selected to best support learning.

Further research is needed to verify our assumption that
controlled scaffolding, that is the ability to fully tailor from

which kinds of building blocks students construct their pro-
grams, would help teachers to create good exercises. This
might even be useful on blocks languages, where on Blockly
it is also implemented.

5. CONCLUSIONS
In this paper, we have discussed different existing ap-

proaches to providing learning content for programming on
mobile touch devices and raised some questions about pos-
sible future directions in this area of research. To address
the needs for programming exercises on mobile touch devices
and the shortcomings of existing learning environments on
such platforms, we have designed and implemented a new
type of exercise dealing with programming. It has been im-
plemented as an extension to the existing MobileParsons
application that provides exercises where students drag and
drop given code fragments to construct a program. The key
idea is to try and allow more choice in how programs are
constructed by allowing some choice in and modifications
to the given code through toggleable elements in the code
fragments, such as, designating a part of a line as a compari-
son operator which would then allow switching through the
different alternatives. The exercises may be designed both to
less restrict the choice of implementation for the solution and
to be more complex and challenging. A core feature, which
enables effective self-study, is the availability of immediate
automatic feedback. This feedback is based on running unit
tests on the constructed program as previously only available
in the desktop equivalent of MobileParsons.

6. REFERENCES
[1] E. P. Glinert. Towards ’second generation’ interactive,

graphical programming environments. In Proceedings of
the 1986 IEEE Computer Society Workshop on Visual
Languages (VL’86), pages 61–70, 1986.

[2] J. Helminen, P. Ihantola, V. Karavirta, and
S. Alaoutinen. How do students solve parsons
programming problems? – execution-based vs.
line-based feedback. In Learning and Teaching in
Computing and Engineering (LaTiCE), 2013, pages
55–61, 2013.

[3] M. Hesenius, C. Orozco Medina, and D. Herzberg.
Touching factor: Software development on tablets. In
T. Gschwind, F. Paoli, V. Gruhn, and M. Book, editors,
Software Composition, volume 7306 of Lecture Notes in
Computer Science, pages 148–161. Springer Berlin
Heidelberg, 2012.

[4] C. Hundhausen. A meta-study of software visualization
effectiveness. Journal of Visual Languages and
Computing, 13:259–290, 1996.

[5] P. Ihantola and V. Karavirta. Two-dimensional
parson’s puzzles: The concept, tools, and first
observations. Journal of Information Technology
Education: Innovations in Practice, 10:1–14, 2011.

[6] V. Karavirta, J. Helminen, and P. Ihantola. A mobile
learning application for parsons problems with
automatic feedback. In Proceedings of the 12th Koli
Calling International Conference on Computing
Education Research, Koli Calling ’12, pages 11–18, New
York, NY, USA, 2012. ACM.

[7] C. Kelleher and R. Pausch. Lowering the barriers to
programming: A taxonomy of programming

55

environments and languages for novice programmers.
ACM Comput. Surv., 37(2):83–137, June 2005.

[8] I. S. MacKenzie and R. W. Soukoreff. Text entry for
mobile computing: Models and methods,theory and
practice. Human–Computer Interaction,
17(2-3):147–198, 2002.

[9] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond. The scratch programming language and
environment. Trans. Comput. Educ., 10(4):16:1–16:15,
Nov. 2010.

[10] S. McDirmid. Coding at the speed of touch. In
Proceedings of the 10th SIGPLAN symposium on New
ideas, new paradigms, and reflections on programming
and software, ONWARD ’11, pages 61–76, New York,
NY, USA, 2011. ACM.

[11] B. N. Miller and D. L. Ranum. Beyond PDF and ePub:
toward an interactive textbook. In ITiCSE’12:
Proceedings of the 17th annual joint conference on
Innovation and technology in computer science
education, pages 150–155, 2012.

[12] D. Parsons and P. Haden. Parson’s programming
puzzles: a fun and effective learning tool for first
programming courses. In ACE ’06: Proceedings of the
8th Austalian conference on Computing education,
pages 157–163, 2006.

[13] F. Raab, C. Wolff, and F. Echtler. Refactorpad: editing
source code on touchscreens. In Proceedings of the 5th
ACM SIGCHI symposium on Engineering interactive
computing systems, EICS ’13, pages 223–228, New York,
NY, USA, 2013. ACM.

[14] N. Tillmann, M. Moskal, J. de Halleux, and
M. Fahndrich. Touchdevelop: programming
cloud-connected mobile devices via touchscreen. In
Proceedings of the 10th SIGPLAN symposium on New
ideas, new paradigms, and reflections on programming
and software (ONWARD ’11), pages 49–60, 2011.

[15] D. Wigdor and D. Wixon. Brave NUI World: Designing
Natural User Interfaces for Touch and Gesture. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
1st edition, 2011.

56

Getting to know computer science freshmen
Päivi Kinnunen

Department of Computer Science and
Engineering

School of Science
Aalto University, Finland

paivi.kinnunen@aalto.fi

Maija Marttila-Kontio
School of Computing

University of Eastern Finland
Finland

maija.marttila@uef.fi

Erkki Pesonen
School of Computing

University of Eastern Finland
Finland

erkki.t.pesonen@uef.fi

ABSTRACT

This paper reports an ongoing study on CS freshmen at two
universities in Finland. The goal of this report is to describe what
kind of students decide to study computer science; what are
students’ programming background, expectations and perceptions
regarding their studies and future work life. We collected data
from 190 students from two universities at the beginning of the
first study year. The results draw a picture of students’ who have
mainly positive and trusting perceptions of the IT field and who
have high expectations of their success at their studies. We will
discuss the results, especially the students’ heterogeneous
programming background and some gender differences, in more
detail and consider how we could and should take those into
consideration in our curriculum and teaching.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education

General Terms
Human Factors

Keywords
Computer science majors, freshmen, previous programming
experience

1. INTRODUCTION
As programming teachers we have observed that part of the
students have serious difficulties in learning programming, which
lead to high dropout rate at CS courses during the first study year.
Previous studies highlight that we are not alone with our problems
[see e.g. 11, 12, 15, 19]. Our aim is to develop our curriculum and
teaching systematically. Some of the big research questions we
had in mind when we started our currently ongoing research
project included: How to best scaffold first year computer science
students to acquire the knowledge and skills they need at the end
of the first study year in order to be able to successfully continue
studies? Which factors are salient in computer science students’
success/struggles during the first years of university studies? Our
questions were motivated both by our own observations as

teachers and literature regarding the difficulties students seem to
encounter during the first years of university studies.

The big research questions we started with are rather extensive
and most likely do not have a single and simple answers. This
paper reports on our first step of this ongoing study. We start our
journey by dividing the big question into smaller parts. In this
paper we concentrate on getting to know our students better; who
are they, what influenced their choice of major, and what interests
them. We hope that knowing who our students are guides us on
how we should acknowledge students’ differing background and
interests in our curriculum and teaching practices.

The literature gives us some ideas of what to ask and what to
expect our students to answer. For instance, a short overview of
literature on occupational choices reveals several intervening
factors. Lent et al. [6] lists factors like interest, exposure to work-
related activities, work conditions, ability considerations,
experiences at leisure time, and finally also career counseling as
playing a part in career choices in general. Other researchers have
studied particularly engineering and computer science students’
occupational choices. While the results corroborate in many way
more general occupational choice theories, a more detailed insight
into engineering and computer science students reveals new
factors. Schulte and Knobelsdorf [13] studied computing
experiences of CS students and psychology students in order to
determine factors that make some students to choose CS as their
future career and others to shy away. The factors that seemed to
have affected the career choice were interest in computers
accompanied with expansive and active learning habits (in
computing context), which lead to positive experiences with
computers. The results of Lang [5] and Paloheimo [10] add yet
another factors. Studies concentrate on female students’ choice to
study computer science or some engineering field. The results
reveal that aspects like personal connection to and encouragement
by a relative, friend working in the field, or a teacher affected
students’ choice considerably. In addition, happenstances also
played a role in the decision.

As a teacher and curriculum developer it is interesting to know
about factors relating to why freshmen chose computer science
major. Another background factor that we might be able to take
into account in our teaching is students’ previous programming
experience. We have designed this study foremost to provide us
such knowledge of students that we might take into account in our
teaching. Below we have formulated following research
questions, which we aim to answer in this paper are:

1. What kinds of students decide to study computer science at our
universities?
1.1 What kind of previous programming experience do students
have?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

Koli Calling '13, November 14 - 17 2013, Koli, Finland
Copyright 2013 ACM 978-1-4503-2482-3/13/11�$15.00.
http://dx.doi.org/10.1145/2526968.2526975

Koli Calling '13, November 14 - 17 2013, Koli, Finland

Copyright 2013 ACM 978-1-4503-2482-3/13/11�$15.00.

http://dx.doi.org/10.1145/2526968.2526975

57

1.2 What kind of perceptions of and interests towards information
technology jobs do students have?

1.3 Which factors had an influence in students choosing computer
science as a major?

1.4 What kind of expectations do students have concerning their
ability to succeed in their studies?

2. METHODOLOGY
The aim of the study is to describe on a general level who our
students are. We were interested in getting to know the whole
cohort (over hundred students) and therefore we decided that
sending out web based questionnaire would be the best, and
efficient, way to get the information we are interested in at this
point of our larger research project. This method also provided us
with the type of data that answered our research questions and
guided us further in our ongoing research project.

The authors of this paper constructed a questionnaire (Appendix)
where we inquired, for instance, students’ academic history,
previous programming experience, and respondents’ perceptions
of their ability to study successfully, and who/what influenced
their choice of major. The questions were motivated by the
literature on occupational choice and our own observations and
interest concerning the freshmen students. Majority of the
questions were closed ended questions with Likert-scale or
multiple answering options.

We collected data in fall 2011 and 2012 at the University of
Eastern Finland and in fall 2012 we collected additional data from
Aalto University. The reason to include the second university to
our data pool related to our future research interests concerning
factors relating to students’ success/struggles. It is important to be
able to make a difference between factors that might be local to
one university and more general factors.

Both of the universities in our study are large research-intensive
universities (15 000 – 20 000 students), which grant master’s
degrees and doctoral degrees in various fields. Students choose
their major as they apply for the university. The questionnaire was
aimed at computer science freshmen who are aiming at Master of
Science (computer science) degree. The two universities provide
similar kinds of Masters of computer science degrees. Both
universities’ yearly intake is around 100 students who are mainly
admitted based on entrance examination and/or matriculation
examination grades. In the previous years the admission levels
have differed between the two universities while Aalto University
has been more selective.

We sent students an email containing the link to the questionnaire
at the beginning of fall semester in fall 2011 and 2012. A
reminder followed the original invitation few weeks later. In
addition, the teacher who was teaching the first course in the fall
reminded students to fill in the questionnaire. The analysis of the
data contains mainly descriptive statistics since at this phase of
our research project we are interested in a broad overview of who
our students are.

3. RESULTS
At the University of Eastern Finland (hereafter referred as UEF)
120 students started their computer science studies in 2011. 63%
(n=77) of them answered the questionnaire. In 2012 there were
103 starting students and the response rate was 56% (n=48). Since

there were no big differences in student population between the
two years, in the following summaries we have combined the data
sets from UEF. At Aalto University (hereafter referred as Aalto)
101 students started their studies in fall 2012. 64% (n=65) of the
students answered the questionnaire. Altogether we got 190
answers to the questionnaires from the two universities.

The distribution of male and female students was very similar
between the respondents of the two universities. 85-86% of the
respondents were males and only 14-15% were females. The
students at Aalto were in average a year younger than at the UEF
(UEF: mean=21,9, min=19, max=43, median = 21, mode= 20,
std.deviation= 3,6. Aalto: mean=20,5, min=18, max=33, median =
20, mode=19, std.deviation= 2,5). The fact that students at UEF
were on average slightly older was also reflected in students’
previous academic histories. The older students had had time to
study in other secondary and tertiary education institutions before
starting their computer science studies (Table 1).

Table 1 Students' previous academic history

 UEF Aalto

Previous academic history % n % n

Only high school 68% 85 75% 49

Studies/degree at the
vocational school

9% 11 3% 2

Studies/degree at the
university of applied sciences

12% 15 0% 0

Studies/degree at the
university

7% 9 22% 14

3.1 Programming background
At UEF nearly 40% and at Aalto University over 60% of students
had some prior programming experiences (Table 2). The clear
majority of students at both universities had gained their
experience through hobbies. Quite many had also some prior
studies on programming. Few students had gained their
programming experience at work. Java, Python, and C++, were
the three most used languages among students. The two student
populations differ in the degree of programming related
experience. It seems students at Aalto have been experimenting
with slightly more languages and writing longer programs before
starting their studies. At both universities fewer female freshmen
had previous programming experience than their male peers.

3.2 Students’ perceptions of and interest
towards computer science
The respondents in general had very positive perceptions of
computer science/IT field as a workplace and their own possibility
to be successful in this field. Students totally or a lot agreed with
the following statements:

• There are good employment opportunities at IT (UEF
84% (n=104), Aalto 89% (n=58))

• IT has high wages (UEF 67% (n=81), Aalto 86%
(n=56))

• IT offers interesting duties (UEF 77% (n=97), Aalto
82% (n=53)).

• I will be successful in IT field (UEF 66% (n=82), Aalto
83% (n=54))

58

Table 2 Students' previous programming experience

 UEF Aalto
 % n % n
Has previous programming experience All

Males
Females

38%
44%
11%

48
46
2

62%
68%
22%

40
38
2

Where have you gained the programming experience* Hobbies
Studies
IT work experience

73%
63%
13%

35
30
6

78%
43%
20%

31
17
8

Which programming languages you have used before* Java
C++
Python
C
Basic
JavaScript
PHP

50%
33%
31%
23%
15%
15%
15%

24
16
15
11
7
7
7

58%
45%
70%
30%
15%
20%
28%

23
18
28
12
6
8
11

How many programming languages you have experience
with? *

1
2-3
≥	 4
No answer

44%
44%
8%
2%

21
21
4
2

15%
48%
38%
-

6
19
16
-

How long was your longest program* < 100 lines
< 500 lines
< 1000 lines
> 1000 lines

58%
18%
10%
14%

28
9
5
7

18%
30%
18%
35%

7
12
7
14

Note. Percentages are calculated from the number of those respondents who have previous programming experience

However, a closer look at the data revealed some interesting
differences between male and female respondents at UEF: only
53% (n=10) of female students answered that IT offers interesting
duties and from the same group only 21% (n=4) agreed that they
will be successful in IT field. However, at Aalto there was no such
difference between male and female students’ perceptions.

When we asked students about their favourite future work titles
the answers scattered relatively evenly (Table 3) manager being
the most popular work title.

Table 3 Students' favorite future work titles

 UEF Aalto
 % n % n
Manager 55% 69 62% 40
Software Designer 51% 64 46% 30
Programmer 46% 58 57% 47
IT-educator or Consult 31% 39 43% 28

Most of the students (UEF 74% (n=92), Aalto 89% (n= 58)) said
that IT interested them very much or a great deal. We also
inquired in more detail which aspects of computer science
interests students at the moment. Students showed very much or a
great deal interest especially towards programming, games and
software design. The results also indicate that male and female
students interests differ in that female are less interested in games
and computer hardware/technology than male students.
Differences between universities show that students in Aalto are

more interested in programming, games and software design than
students in UEF. On the other hand students in UEF are more
interested in computer systems than students in Aalto. Generally
female students are more interested in software design than male
students. (Table 6, Appendix)

3.3 Factors influencing students choosing
computer science as a major
Relatives and friends had influenced part of the students when
they chose CS as their study program (UEF 21% (n=26), Aalto
16% (n=10), but study counsellors had only a very small effect if
any. In open answers students also highlighted the importance of
own interest towards computer science (UEF 15% (n=19), Aalto
18% (n=12)) and prior hobbies in their decision (UEF 15%
(n=19), Aalto 12% (n=8)). Some also explicitly mentioned that a
family member or an acquaintance, who already works at the
field, influenced their choice to some degree.

Based on the responses CS was most students’ first choice and
they did not choose CS just because they wanted to get accepted
to the university (Table 4). Happenstance seemed to play only a
minor role in choosing the major. However, when we looked at
the results in more detail we found out that there were differences
both between the two universities and between male and females.
The students at Aalto seemed to be quite certain they had got in to
study the major that was their first choice. The different entrance
requirements also showed in students’ responses; 47% of UEF
students thought it was easy to get admitted to study CS but only
9% of students in Aalto hold the same thought (Aalto has had

59

Table 4 Students' perceptions of choosing CS as a major

 UEF Aalto
 % n % n
CS was my 1st choice major All

Males
Females
No previous programming experience*
Previous programming experience*

57%
66%
16%
47%
75%

72
69
3
36
36

82%
82%
78%
72%
88%

53
46
7
18
35

I just wanted to get accepted to the
university

All
Males
Females
No previous programming experience*
Previous programming experience*

20%
17%
37%
25%
13%

25
18
7
19
6

5%
5%
0%
4%
5%

3
3
0
1
2

Me choosing CS was due to a
happenstance

All
Males
Females
No previous programming experience*
Previous programming experience*

12%
8%
31%
14%
8%

15
9
6
11
4

21%
20%
33%
28%
15%

13
11
2
7
6

It was easy to get admitted to study CS All
Males
Females
No previous programming experience*
Previous programming experience*

47%
47%
47%
53%
33%

58
49
9
41
16

9%
9%
11%
12%
8%

6
5
1
3
3

Note. Percentages refer to the respondents who totally or a lot agreed with the statement.
*Percentages are calculated from the number of students who had/did not have previous programming experience.

higher entrance requirements than UEF). This fact reflects most
likely also in differences between the universities when we asked
students whether they chose CS majors just because they wanted
get accepted as a student at a university. This was quite clear in
UEF where 25% of those who had no programming experience
just wanted to get to the university and 53% of the same group
thought it was easy to get admitted to study CS.
There were some differences also between genders. At UEF only
16% (n=3) of females agreed that CS was their first choice major
and 37% of females agreed that they just wanted get accepted to a
university. However, we did not find similar differences between
male and female students at Aalto.

3.4 Students’ expectations concerning their
studies
Students had rather strong belief that they will succeed in their
studies and graduate with the degree in computer science (Table
5) Factors that might hinder students from graduating were:
getting interested in some other field or declined motivation in
general. Few students (UEF 7% (n=9), Aalto 6% n=4) were also
uncertain about their ability to deal with the extent and difficulty
of the studies). Receiving a good job offer before graduating was
also mentioned as a possible hindrance for graduation. Students
who had programming experience had the strongest belief in

graduating as masters of computer science (UEF: 67% vs. 51%.
Aalto: 88% vs. 60%). In UEF there was a similar trend in the
belief in the success of the studies (71% vs. 48%), but in Aalto
there was no difference. Once again the women from UEF were
an exception: 21% (n=4) of them were uncertain about their
success in studies. Female students in both universities were
uncertain on their graduation: in UEF only 21% and in Aalto 44%
thought they will graduate.

4. DISCUSSION
The response rate was reasonable high, especially since answering
the questionnaire was voluntary and we did not offer any
incentives. We got answers from over half of the starting students
and therefore we are confident that the results represent the
freshmen to some degree. However, since the number of students
in some sub-groups (e.g. female students) is very low we need to
be careful when interpreting the results.

The results have helped us to get to know our freshmen better and
thus this research has fulfilled one of its’ goals. The results also
provide us with the essential background knowledge we need in
our future research. Next we are going to highlight some aspects
regarding our results and discuss whether and how we should take
them into account in our teaching and curriculum design.

60

Table 5 Students' beliefs on their success in studies

 UEF Aalto
 % n % n
I will succeed in my studies All

Males
Females
No previous programming experience*
Previous programming experience*

57%
64%
21%
48%
71%

71
67
4
37
34

80%
80%
78%
80%
80%

52
45
7
20
32

I will graduate as masters of computer
science

All
Males
Females
No previous programming experience*
Previous programming experience*

57%
71%
21%
51%
67%

71
67
4
39
32

77%
82%
44%
60%
88%

50
46
4
15
35

Note. Percentages refer to the respondents who totally or a lot agreed with the statement.
*Percentages are calculated from the number of students who had/did not have previous programming experience.

4.1 Previous programming experience
Quite many students have had programming as a hobby or they
had studied programming in another school/university or gained
their experience through work. Small minority had considerable
previous programming experience writing long programs and
having experience with several languages. Many of the students
also had experience with the same programming languages
(Python and Java), which we use in our courses. Previous
programming experience gives students a good starting point to
their studies: they know at least to some degree what
programming is.

A pragmatic question follows from this result: How should we
take students previous programming (and work) experience into
account in the teaching? Would these students need some special
short cuts in their studies? On the other hand, students with
previous programming experience are not a homogeneous group.
The degree of experience varies a lot. Therefore, one model (e.g.
standard short-cuts) does not fit all students. Or if we think the
other way around: should we pay special attention to those
students, who do not have programming experience?

Another interesting future research question is whether these
students who have programmed before succeed in their studies
better than their peers who do not have previous programming
experience? This question is certainly worthwhile investigating in
our future studies.

4.2 Occupational choices and interest towards
computer science
The results partly corroborate the literature on factors influencing
occupational choices [5, 10, 13]. The role of relatives, friends in
general, and acquaintances who already work in IT field came up
in our results as well as own interest towards the field and
computer related hobbies. However, the role of study counsellors
did not seem to have any weight in students’ choices. These
results call for further discussion on a closer cooperation with
high schools, for instance in a form of alumni visits and/or
cooperation with study counsellors and science teachers.

Students also had very positive image of the IT work (e.g.,
provides interesting duties, good salary) and their own abilities to
be successful in the field. It is likely that these positive

perceptions also played a role while students were choosing the
major. Finally, it is reassuring to note that a majority of the
students are studying a major that was their first choice. Most of
the students also thought that they would succeed in their studies
and graduate as Master of Science. However, we cannot ignore
the result that we still have a group of students, who at the very
beginning of freshman year doubt whether they will succeed in
their studies and whether they will ever graduate. We certainly
need to take a closer look at this group of students in our future
studies.
One group of students that stands out as being “low expectations”:
female students at UEF. Many of female students were uncertain
about the success in their studies and in IT field after studies.
They had chosen IT mostly because they wanted to get to
university and CS offered an easy way to that. Because the
number of female students is small in this special group, it might
be possible to arrange some special activities to enhance students’
motivation and efficacy beliefs regarding successful studies and
success in IT related career. However, a more qualitative
approach in the future is needed in order for us to get a proper
insight into this group of students so that we would be able to
provide the type of support and encouragement that would best
benefit these women.

4.3 What we learned from our results
As teachers we have always been aware that our students have
different backgrounds and experiences. This study gives those
previous “gut feelings” an empirical bases and gives us a sense of
proportions of, for instance, how much previous programming
experience students have or how interested in IT and computer
science students actually are. We use the results for two kinds of
purposes in the future: to reconsider our teaching and curriculum,
and to guide us in our future studies.

During this study the CS courses at the UEF, for example, mostly
followed the ACM’s Computer Curriculum [ACM2001]. The first
year curriculum for CS majors included three programming
courses: Introduction to Programming CS0.5 (3 ECTS1), CS1 (4
ECTS), and CS2 (5 ECTS) courses. The programming language
in the CS0.5 course was Python. In CS1 and CS2 courses we used
Java. The basic structure of a programming course consists of

1 1 ECTS = 26,5 hours of work for a student

61

lectures (theory), labs (practice), and an assignment (theory and
practice). Our curriculum is advertised suitable for students
without any programming background. In practice, however, the
drop-out rates in our programming courses are relatively high
especially among novice programmers. At the same time, we have
experienced that advanced students become easily frustrated
without proper programming challenges.

So how can we use the discovered information to increase our CS
students’ ability and motivation to learn to program, and hence
increase the passing rates in programming courses? Since we are
dealing with a very heterogeneous group of programming students
the previous question can be asked considering different
experience levels, both genders separately, and different aspects
on motivation and self-efficacy. Several publications have
highlighted that the heterogeneous of students’ qualifications and
background is challenging for teachers (how to teach and how to
motivate) [see, e.g. 4, 1, 2].
Though the results of this study show that the students have high
motivation in the beginning of their studies our experience shows
that it doesn’t last for a long time. Many students seem to lose
their motivation before the end of autumn semester. Why does
this happen and what could be done?

There are numerous studies proposing solutions for enhancing
students’ motivation, for example, by using robots [8], using a
“games first approach” [7], or proposing more motivating
programming goals and context [3, 4]. While game programming
can be seen as a motivating programming context we need to take
into account that based on the results, our female CS students do
not find game programming interesting. Wilson [18] presents
same kind of results presenting that (when learning to program)
females prefer real-world assignments to games, while males
prefer game programming. To motivate our students, we could
offer programming tasks that are more connected to a student’s
personal life, such as, hobbies. Game programming can be offered
as an option but it should not be used as the only motivational
context.

Finally, we would like to ask how to raise self-efficacy of the
students who are feeling uncertain about their graduation in CS.
Self-efficacy problems are normally connected to low
programming experience (see, for example, [14]). In our case,
self-efficacy problems especially involve female programmers. As
we again turn to literature, Simon and Hanks [16] propose pair
programming as a way to improve student’s self-confidence.
Mendes and Al-Fakhri in [9], and Williams et al. in [17] offer
similar suggestions.

In an ideal world where we do not need to think about resources,
one solution for a heterogeneous group of programming students
is to divide students into two or three groups by their
programming background. This way, advanced students can have
programming tasks better suitable for their skills, while beginners
can get intensive and more individual instructions to fulfil the
course learning objectives. Furthermore we should give more time
for beginners to internalize new, quite abstract things. Naturally,
this will cause timing issues with other courses and students
which, again, requires more resources if put into practice. The
critical question is: to whom and by what criteria the restricted
resources should be targeted?

In our future studies we will follow up on our students and see
how they have proceeded in their studies. We are planning on
adding also more qualitative approaches to our study to get a
deeper insight into study processes and how different kinds of
pedagogical interventions may affect it. This “getting to know our

students” research has provided us relevant information, which we
can use, e.g., in finding relevant subgroups of students to follow.
We will also continue collecting data from two different
universities. The current results suggest that student populations
are slightly different at different universities.

5. CONCLUSION
The goal of this study was to get to know our computer science
freshmen better and thus help us to stay in tune with the students.
The results portray a picture of heterogeneous student group
where different subgroups of students differ from each other by
their previous programming experience, self-efficacy beliefs, and
what interests them. We have discussed what some of these
results could mean in relation to how and what we should teach to
our students to scaffold all students’ learning.
We would like to end the article by listing some very practical
questions our results posed to us.

• How and to whom we should allocate the limited
teaching resources?

• Which student groups would benefit from what kind of
support? Some of the student groups we have in mind
include:

o Female students, especially the ones with low
expectations concerning successful studying
and graduation.

o Students with/without previous programming
experience.

o Students with prior academic studies/work
experience.

o Students who have high motivation in the
beginning but start to lose it during the
studies. How could we identify these students
and help them to keep their high motivation?

6. REFERENCES
[1] Andersson, R., and Bendix, L. 2005. "Towards a Set of

eXtreme Teaching Practices." Presented at Proceedings of
the 5th Baltic Sea conference on Computing education
research (Koli Calling 2005), Koli National Park, Finland.

[2] Herrmann, N., Popyack, J., L. , Char, B., Zoski, P., Cera, C.,
D. , Lass, R., N. , and Nanjappa, A. 2003. "Redesigning
introductory computer programming using multi-level online
modules for a mixed audience" Proceedings of the 34th
SIGCSE technical symposium on Computer science
education. Reno, Navada, USA.

[3] Kelleher, C. and Pausch, R. 2005. Lowering the barriers to
programming: A taxonomy of programming environments
and languages for novice programmers. ACM Comput. Surv.
37, 2 (June 2005), 83-137.

[4] Lahtinen, E., Ala-Mutka, K., and Järvinen, H-M. 2005. A
study of the difficulties of novice programmers. SIGCSE
Bull. 37, 3 (June 2005), 14-18.

[5] Lang, C. 2010. Happenstance and compromise: a gendered
analysis of students’ computing degree course selection.
Computer Science Education. 20 (4), 317 - 345.

[6] Lent, R. W., Brown, S.T., Talleyrand, R., McPartland, E.B.,
Davis, T., Chopra, S.B., Alexander, M. S. Suthakaran, V.,
Chai, C-C. (2002). Career Choice Barriers, Supports, and

62

Coping Strategies: College Students’ Experiences.Journal of
Vocational Behavior 60, 61–72.

[7] Leutenegger, S. and Edgington, J. 2007. A games first
approach to teaching introductory programming. In
Proceedings of the 38th SIGCSE technical symposium on
Computer science education (SIGCSE '07).

[8] McGill. M. M. 2012. Learning to Program with Personal
Robots: Influences on Student Motivation. Trans. Comput.
Educ. 12, 1, Article 4 (March 2012), 32 pages.

[9] Mendes, E., Al-Fakhri, L. B., and Luxton-Reilly, A.
2005."Investigating pair-programming in a 2nd-year
software development and design computer science course."
in ACM SIGCSE Bulletin, pp. 296-300, 2005.

[10] Paloheimo, A., Pohjonen, K., Putila, P. (2011). 'Pathways to
Male-Dominated Engineering Programs', Proceedings of
2011 ASEE Annual Conference, Vancouver, B.C., Canada,
June 26-29, 2011.

[11] Pears, A., Seidman, S. Malmi, L., Mannila, L. Adams, E.,
Bennedsen, J., Devlin, M., and Paterson, J. 2007. A survey
of literature on the teaching of introductory programming.
SIGCSE Bull. 39, 4 (December 2007), 204-223.

[12] Piteira, M. and Costa, C. 2012. Computer programming and
novice programmers. InProceedings of the Workshop on
Information Systems and Design of Communication (ISDOC
'12). ACM, New York, NY, USA, 51-53.

[13] Schulte, C., Knobelsdorf, M. (2007). Attitudes towards
Computer Science - Computing Experiences as a Starting
Point and Barrier to Computer Science. In: ICER '07:
Proceedings of the 3rd Workshop on International
Computing Education Research, ACM, 2007, 27-38.

[14] Sethuraman, S. and Dee Medley, M. 2009. Age and self-
efficacy in programming. J. Comput. Small Coll. 25, 2
(December 2009), 122-128.

[15] Shuhidan, S., Hamilton, M. and D'Souza, D. 2009. A
taxonomic study of novice programming summative
assessment. In Proceedings of the Eleventh Australasian
Conference on Computing Education - Volume 95 (ACE
'09), Margaret Hamilton and Tony Clear (Eds.), Vol. 95.
Australian Computer Society, Inc., Darlinghurst, Australia,
Australia, 147-156.

[16] Simon, B. and Hanks, B. 2008. First-year students'
impressions of pair programming in CS1.J. Educ. Resour.
Comput. 7, 4, Article 5 (January 2008), 28 pages.

[17] Williams, L., McDowell, C., Nagappan, N, Fernald, J., and
Werner, L. 2003. “Building pair programming knowledge
through a family of experiments,” Proceedings 2003
International Symposium on Empirical Software
Engineering. ISESE 2003. IEEE Computer Society 2003, pp.
143-52, 2003.

[18] Wilson, B. C. 2006. Gender differences in types of
assignments preferred: Implications for computer science
instruction. J. Ed. Comput. Res. 34, 3, 245–255.

[19] Yadin, A. 2011. Reducing the dropout rate in an introductory
programming course. ACM Inroads 2, 4 (December 2011),
71-76.

7. APPENDIX
Questionnaire
Background questions
1. Campus
2. Student number
3. Year of birth
4. Gender

5. Previous studies (high school/vocational degree/vocational high
school studies/vocational high school diploma/university
studies/university degree)
6. Define in your own words: What is programming?
7. Do you have previous experience in programming? (yes/no)
8. What kind of previous experience? (hobby/studies/work)

9. Which programming languages have you used?(you can choose
many)(Java/Python/ C++/C/Basic/JavaScript/PHP/Other – What?)

10.How many lines does your longest program have?
(<100/<500/<1000/>1000)
Interest towards IT

11. I’m interested on information technology (a lot/quite a
lot/somewhat/a little/ not at all)

12. Especially I’m interested in: (you can choose many)
(computer technology/programming/ computer systems/software
design/user-interfaces/games/theory)
13. In addition, I am interested in … (open ended question)

14. I think I could be successful in IT (totally agree/agree a
lot/agree somewhat/agree little/don’t agree)

15. IT offers good possibilities to get a job (totally agree/agree a
lot/agree somewhat/agree little/don’t agree)

16. IT has high wages (totally agree/agree a lot/agree
somewhat/agree little/don’t agree)

17. IT offers interesting jobs (totally agree/agree a lot/agree
somewhat/agree little/don’t agree)

To what degree the following factors influenced your choice
major?
18. My careers counsellor suggested me IT (very significant/quite
significant/somewhat significant/little significant/not significant)
19. My relative or friend suggested IT for me (very
significant/quite significant/somewhat significant/little
significant/not significant)
20. Someone else suggested IT for me (very significant/quite
significant/somewhat significant/little significant/not significant)
21. I became interested on IT thanks to the image of IT in media
(very significant/quite significant/somewhat significant/little
significant/not significant)
22. Something else got me interested in the IT field, please
elaborate (open ended question)
23. Choosing IT was just an impulse (very significant/quite
significant/somewhat significant/little significant/not significant)

24. It was easy to get to IT studies (very significant/quite
significant/somewhat significant/little significant/not significant)

25. I could not get the place I wanted, but I wanted to the
university (very significant/quite significant/somewhat
significant/little significant/not significant)

63

26. Other reason, please elaborate?

27. I was accepted to study IT which was my favourite (totally
agree/agree a lot/agree somewhat/agree little/don’t agree)
Questions relating to future
28. I’m convinced the I will graduate from IT (totally agree/agree
a lot/agree somewhat/agree little/don’t agree)
29. If you did not agree on the previous question what might
prevent you from graduating?

30. What is your favourite job? (you can choose many)
(programmer/it-educator/consult/designer/manager/something
else)
31. If you answered something else, what would it be?

32. I’m quite sure I will succeed in my IT studies (totally
agree/agree a lot/agree somewhat/agree little/don’t agree)
33. Open comments

Table 6 Interesting aspects of computer science

 UEF Aalto
 % n % n
Programming All

Males
Females

45%
46%
37%

56
49
7

83%
80%
100%

54
45
9

Games All
Males
Females

32%
36%
11%

40
38
2

62%
66%
33%

40
37
3

Software design All
Males
Females

23%
27%
32%

26
20
6

49%
46%
67%

32
26
6

Computer hardware/technology

All
Males
Females

34%
40%
11%

44
42
2

43%
46%
22%

28
26
2

Computer systems All
Males
Females

41%
41%
42%

51
43
8

32%
34%
22%

21
19
2

User-interface All
Males
Females

14%
14%
16%

18
15
3

32%
32%
33%

21
18
3

Theory All

Males
Females

14%
10%
11%

13
11
2

23%
21%
33%

15
12
3

64

Use of concept maps to analyze students’ understanding
of the I/O subsystem

Edurne Larraza-Mendiluze
University of the Basque Country (UPV/EHU)

Department of Computer Architecture and
Technology

Manuel Lardizabal Pasealekua 1
20018 Donostia-San Sebastian

+34 943 015159
edurne.larraza@ehu.es

Nestor Garay-Vitoria
University of the Basque Country (UPV/EHU)

Department of Computer Architecture and
Technology

Manuel Lardizabal Pasealekua 1
20018 Donostia-San Sebastian

+34 943 015080
nestor.garay@ehu.es

ABSTRACT
The Input/Output topic is mandatory in the Computer
Architecture branch of the computing curricula. However,
in our experience it is a rather complex topic for the students
to understand.

This paper presents the process followed to analyze the
concept maps built by the students at the end of the
“Computer Structure” subject, in the second semester of the
degree course.

The analysis process is explained because we had to adapt
the software used in other disciplines to our needs. Merging
all the concept maps showed that some relationships were
missing, some were very messy and others were very strong.
Based on the results achieved, some points need to be
reinforced during the learning process.

Categories and Subject Descriptors
B.4.0 [Input/Output and data communications]: Gen-
eral; K.3.2 [Computer and Information Science Edu-
cation]: Computer Science Education

General Terms
Measurement, Documentation, Experimentation, Human
Factors, Theory, Verification.

Keywords
Input/Output topic, Concept maps, Evaluation.

1. INTRODUCTION
Learning the functioning principles of the computer In-

put/Output (I/O) subsystem of a computer is an important
part of computing degrees; both for computer engineers and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Koli Calling ’13, November 14–17, Koli, Finland
Copyright 2013 ACM 978-1-4503-2482-3/13/11 ...$15.00
http://dx.doi.org/10.1145/2526968.2526976.

computer scientists [1, 2]. The I/O topic covers a lot of con-
cepts that need to be explained. Unfortunately, there is no
consensus in the academic community about the importance
of these concepts, the best way to explain them, the type of
problems to be solved and the exercises to be carried out,
the amount of time to be devoted to each concept, etc. In
most cases, several classical references are used to support
their lectures.

The importance of the concepts involved varies between
references. Based on a list of the five most widely used text-
books in computer organization and architecture [3], and af-
ter a study of the syllabuses of 36 universities ranked among
the first 100 in six different university rankings, we selected
four textbooks. Stallings [4] describes the I/O modules in
a general way, including their structure and function. The
possibility of having memory-mapped registers or specific
I/O instructions are considered, and the existing synchro-
nization methods are also presented (polling, interrupts and
DMA). Exercises deal with performance. Patterson and
Hennessy [5] place greater emphasis on storage, dependabil-
ity and performance. Hamacher et al. [6], focus more on
low-level programming of interrupt service routines, and [7]
pays attention to data-path and signals.

In the university where the authors of this paper work, the
approach is a combination of general description and low-
level programming, while in other universities the approach
may focus more on performance, or other details depending
on the textbook taken for the computer I/O subsystem
topic.

However, this paper is not related to how the computer
I/O subsystem topic is taught, but how it is acquired by
the students. We would like to identify exactly where the
problem lies when students are trying to understand the
computer I/O subsystem. Thus, the question we would like
to empirically answer in this paper is: How do students
understand the I/O topic?

This paper is intended to present the work we have carried
out in order to answer the above question, continuing the
work presented by Larraza-Mendiluze and Garay-Vitoria [8].
For that purpose, a research has been carried out assessing
students’ level of understanding after being taught the
computer I/O subsystem topic. The research will also show
the strengths and weaknesses of the educational process
giving us the opportunity to suggest modifications to be
made in the educational process employed in the classroom.

65

The paper is divided into four further sections. The next
section will review the bibliography on this topic. Section
three will detail the investigation itself, the participants we
selected to participate in the investigation and the steps
followed to obtain the information. Section four will report
the data obtained during the study and the information
extracted from those data, while last section presents the
conclusions and outlines future work.

2. RELATED WORK
The literature studying the issues in computer architec-

ture education can be found at the Workshop on Computer
Architecture Education [9], and in other conferences and
journals dealing with computing education, such as ICER,
Koli Calling, ITICSE [10, 11, 12], and IEEE Transactions
on Education [13] or ACM Inroads [14]. The computer I/O
subsystem topic has not been very widely treated. There are
several references that include the I/O unit within computer
architecture, either in simulators such as those presented in
[15] and [16] or integrated into new teaching approaches [17].

The different approaches to treating I/O topics found in
the textbooks is also reflected in the different universities. It
is possible to analyze teaching guides to validate this. Other
approaches to identifying the differences between what is
taught in different centers include analyzing exam questions
and problem-solving exercises, and obtaining the relevant
concepts that are proposed by teachers in the corresponding
universities. In order to obtain this information, as stated
in [18], the collaboration of the teaching groups is essential.

In this step of the investigation, we want to find out how
the students view the I/O topic at the end of the semester,
using the teaching/learning methodology described by Larraza-
Mendiluze et al. [19]. This will enable us to identify mis-
conceptions that need to be addressed during subsequent
teaching/learning processes.

A person’s knowledge can be assessed by using different
elicitation techniques [20]. Concept maps, one of these
techniques, are defined by Novak and Cañas [21] as graphical
tools for organizing and representing knowledge, including
concepts and their relationships. As Sanders et al. [22] point
out, concept maps have been used for different purposes,
such as: helping students to learn; measuring changes
in students understanding; and, what really interests us,
obtaining a static picture of what students know. Every
technique requires the training of both the person who is
going to elicit the knowledge and the person from whom
the knowledge is going to be elicited. Since we are working
with first year students, it is important not to overload them
with extra work or take too much of their time. We chose
this technique because it is also used to help in students’
learning, and therefore the effort put into learning concept
mapping would later be rewarded.

A concept map shows individual knowledge, but we
wanted to analyze the whole class. Therefore, software
tools for electronic concept mapping from the learner’s
perspective [23] were not suitable for this research. Software
that could be used to analyze all the concept maps together
was not easy to find. During the search, most of the
solutions we found were valid only for individual concept
map assessment. However, McLinden [24] showed us the
similarities between concept maps and social networks. In
social network analysis there are many tools used to find
similar patterns between users. We tried two of these

software tools; UCINET [25], and PAJEK [26]. Due to
the similarities with the text documents generated by the
concept map editor we were using (CM-ED [27]), PAJEK
[26] was selected as the social network analysis software for
this project. [28, 29] were used in order to learn how to use
PAJEK [26].

3. METHOD

3.1 Subjects
The research was carried out in a first year, second semester

course called “Computer Structure”; more specifically, dur-
ing the second half of the course, where the computer I/O
subsystem topic is taught. Although 78 students were en-
rolled, the experiment was carried out with only the 39 stu-
dents that actively completed the whole course. This num-
ber might be interpreted being low, but it must be borne in
mind that it is a first year course. Many students could de-
cide to abandon these studies during the first semester and
never come to second semester courses. Many other students
could decide not to follow a course during that semester in
order to be able to fulfill the requirements of another course.
Some other students may decide to take the course exams,
but without actively following it (this is an option that the
university gives them). Figure 1 shows how only 50% of all
the students enrolled responded to our research. It is in-
deed 70% of the students that after that year continued the
computing studies, and 100% of the students that actively
followed the course.

Figure 1: Graph showing the different ways in which
students take the course. The outer circle refers to
enrolled students while the inner circle refers to the
students that did not leave the computing studies
after the first year.

3.2 Procedure

3.2.1 Training the students to build concept maps
It is very important to train students in the use of a new

tool (in this case, the concept maps). Even the way in
which they are trained can influence the final result [30].
Therefore, the training phase was very carefully planned.
Since what we wanted to obtain was the picture of the topic
the students had at the end of the semester, the concept
mapping training period was the same as the period devoted
to teaching/learning the topic.

During the presentation of the topic, the importance we
were going to give to the concept maps was emphasized.

66

Then, as an example, the evaluation method for this half
(the computer I/O subsystem topic) of the “Computer
Structure” course was explained using a concept map (see
Figure 2). We wanted the students to be able to build a
concept map at the end of the semester and, we therefore
made the delivery of the concept maps mandatory. However,
we did not want the students to learn the concept maps
by rote. This was the tricky part. We clearly stated
that concept maps would not be part of the examination.
Moreover, the percentage of the score given to the concept
maps delivered was very low, 3.5%. This approach carried
the risk that the students would not take the concept maps
seriously and would build them up without paying attention.
In order to avoid this, we explained that concept maps built
without any care would be taken as not delivered.

Figure 2: Concept map handed out to the students
to show the different evaluation options.

During the seven weeks that the computer I/O subsystem
topic lasted, the students were asked to deliver four different
concept maps answering the following questions:

1. What is the Von Neumann structure? (Out of the
given concepts).

2. What is needed for I/O to occur, and how does the
synchronization work?

3. Complete the previous concept map with what you
now know.

4. Complete the previous concept map answering the
question: How does DMA work?

All the students received feedback after completing each
concept map. We did not want the construction of the con-
cept maps and our intervention to have too much effect on
the final result. Indeed, it would have been better to use an-
other topic during the training phase, but we had too many
time constraints. Therefore, we decided that the feedback
would be almost exclusively on the construction of the map.
The only feedback statements related to the content itself
were as follows:

1. You need to expand the topic further.

2. A concept such as “controller” is too broad, Please be
more specific.

3. This is just a classification. You need to try to
focus more on the description and the operation level.
For example, you said there are two synchronization
methods, but what do you need synchronization for?

The main feedback given to the students concerning the
construction of the map was due to the lack of linking
phrases (see Figure 3), the construction of block diagrams
instead of concept maps (see Figure 4), or the use of concepts
that were not concepts but whole phrases (even paragraphs
taken from the course notes); in other words, a schema that
looks like a concept map (see Figure 5).

Figure 3: A student’s concept map to answer the
question “What is the Von Neumann structure”,
without any linking phrase. Translated into English
from the original in Basque.

For the last concept map the students built on their
own, we had to tell them to please try to show their own
knowledge, because most of them were building the concept
maps while reading the course notes. It is obvious when the
concept maps are built that way, because they contain too
many specific details.

3.2.2 The last concept map
Finally, the day after the exam, all the students were

called to the classroom. They did not know they were
going to be asked to build a concept map. They were given
twenty selected concepts and they were told they could add
more concepts if needed. The students were placed in exam
conditions, in order to avoid copying, and they built their
concept maps on paper.

67

Figure 4: A student’s trial concept map to answer
the question “What is the Von Neumann structure”
that turned out to be a block diagram. Translated
into English from the original in Basque.

Figure 5: Although impossible to read, this is a good
example of schema that looks like a concept map.

The twenty concepts given to the students to build the last
concept map were taken from the course notes, according
to the weighting they had during the course (e.g. we
talked much more about interrupts and different kinds of
interrupts than about DMA, and therefore the percentage of
the concepts about interrupts is bigger than the percentage
of concepts about DMA). We also considered that the
concepts selected appeared widely used text books in the
area [4, 5, 6, 7], although some times the terms used changed.
The selected concepts can be seen in Table 1, in a random
order.

3.2.3 Students’ feedback
The students were not very happy about having to build

the concept maps. Some of them told us this personally
and it was also reflected in a satisfaction survey they filled
out. To the question “Was concept mapping helpful in your

Table 1: The 20 concepts given to the students to
build the last concept map.

Interrupt Service Routine DMA controller
Enable/Disable interrupts Polled I/O
Read control instructions I/O register

Interrupt Controller DMA controller
Interrupt Controller DMA

Interrupt identification Peripheral
Interrupt-driven I/O CPU

Nested interrupts Subroutine
Interrupt priority DMA controller
I/O instructions I/O controller

learning process?”, the students answered in a Likert scale
(1: strongly disagree to 5: strongly agree) as can be seen in
Figure 6. However, the data obtained with the students’
concept maps was essential for this research. Moreover,
more students passed the I/O subject (i.e. obtained a score
higher than 5 out of 10) than in previous years, and the
drop-out ratio (without considering the students who left
studies the computing studies) was quite low, as can be seen
in Figure 7. Although this was not the aim of this research,
this data might indicate that concept maps were helpful for
the students. Further analysis is needed to support this idea.

Figure 6: Answers to the question “Was concept
mapping helpful in your learning process?” in a
Likert scale.

Figure 7: I/O pass and drop-out rates.

3.2.4 Analysis of the concept maps

Step 1.
All the concept maps built by the students in their last

deliverable (the one under exam conditions) were digitalized
with CM-ED [27] software. One big difference between
concept maps and social networks is that while in concept
maps it is possible to use n-ary relationships, social networks
apparently only accept binary relationships. Therefore,
some of the relationships had to be changed during this first
step. Mainly two kinds of changes where made, as can be
seen in Figure 8.

68

Step 2.
Once all the concept maps had been digitalized, the

essential information needed to be extracted from the XML
document that defines the concept map and converts it to
PAJEK format (nodes or concepts vs. vertices, links vs.
arcs(directed) or edges (non directed)).

Step 3.
Merge all the concept maps. The students had the

possibility to add concepts that were not on the list (See
Table 1). Therefore, it was very important to bear in
mind that not all the concept maps had the same amount
of concepts and that the same concept would always be
numbered the same.

Step 4.
Use PAJEK to improve the readability of the graph.

Figure 8: Conversions needed to adapt the concept
maps for social network analysis.

4. RESULTS

Figure 9: Graph showing all the relationships in the
students’ concept maps.

When merging all the concept maps in a graph, showing
the strength of the concept relationships, we obtained the
graph shown in Figure 9. As can be appreciated, in most

of the weak relationships at least one of the linked concepts
has been added by the students.

The graph in Figure 9 shows a lot of very weak relation-
ships that hamper reading. Therefore we decided to prune
the graph by removing the relationships used by three or
less students. We stopped there because if we removed the
relationships used by four students at least one of the con-
cepts of the given list would be left an orphan. The resulting
graph is shown in Figure 10, where most of the weak con-
nections have been pruned out and only 7 of the 39 concepts
added by the students remain connected.

4.1 Connections between subtopics
The concepts given to build the concept map can be di-

vided into four subtopics; the system itself (CPU, mem-
ory, and peripheral), represented in white; the I/O con-
troller (I/O controller, I/O registers, read control instruc-
tions, I/O instructions), represented in light grey; synchro-
nization (polled I/O, interrupt-driven I/O, sampling the sta-
tus, I/O interrupts, interrupt controller, identify interrupt,
enable/disable interrupts, interrupt priority, Interrupt Ser-
vice Routine, nested interrupts, subroutine), represented in
dark grey; and DMA (DMA, DMA controller), represented
in black. The concepts added by the students were also clas-
sified into these subtopics, but there was the need to create
a new subtopic for some of them that were too general (e.g.
program). The newly created subtopic was given the name
“global”.

We wanted to determine whether the students were able
to correctly relate these subtopics. We shrunk the subtopics
in order to be able to depict in a graph (see Figure 11)
all the connections between subtopics. The graph in
Figure 11 shows that the “System” subtopic is strongly
connected to the other subtopics, but the “I/O controller”,
“Synchronization”, and “DMA” subtopics are either not
connected at all or are weakly connected. For example, the
CPU in the “System” subtopic and the I/O controller in
the “I/O controller” subtopic need synchronization in order
to connect, but there are only 17 links between these two
subtopics. The DMA controller in the ”DMA” subtopic is
in fact an I/O controller, but there are only 7 links between
these two subtopics. Finally, the DMA controller needs to
synchronize with the CPU in order to allow data transfer
between memory and a peripheral, but there is no link
between the “DMA” and the “Synchronization” subtopics.

The following subsections are going to look more closely at
these connections between subtopics. That for, figures 12-
13 expand these connections.

4.1.1 Links between the “I/O controller” and the
“synchronization” subtopics

Figure 12 shows that although there are 17 links between
the “I/O controller” and the “Synchronization” subtopics
these links are divided into the two synchronization methods
presented in the subject; Polled I/O and interrupt-driven
I/O. Only 4 students (12%) linked the I/O controller to the
interrupt-driven I/O, while 13 (39.4%) see the relationship
the I/O controller has with sampling the status of the pe-
ripheral. These students also see that this has been done
via I/O registers, and 8 students (24.2%) know that the I/O
register used for that purpose is the status register.

69

Figure 10: Graph showing the concept map links used by more than three students.

70

Figure 11: Graph showing the links between
subtopics.

Figure 12: Graph showing the links between
the “I/O controller” and the “synchronization”
subtopics.

4.1.2 Links between the “I/O controller” and the
“DMA” subtopics

Figure 13: Graph showing the links between the
“I/O controller” and the “DMA” subtopics.

Figure 13 shows all the links connecting the “I/O con-
troller” and the “DMA” subtopics. 7 students (21.2%) know
that the DMA controller is in fact an I/O controller, but no
more than 3 students mention the specific I/O registers of
the DMA controller.

4.1.3 Links between the “DMA” and “synchroniza-
tion” subtopics

Nobody linked the “DMA” subtopic with the “synchro-
nization” subtopic. The DMA controller needs to synchro-
nize with the CPU once the transfer is finished. This syn-
chronization is usually done by interrupt-driven I/O because
of the ability of the DMA controller to generate I/O in-
terrupts. However the students’ concept maps show that
this mental model [31] has not been created in the students’
minds.

In the following subsections, we are going to look more
closely at each of the subtopics.

4.2 Connections inside the “I/O controller”
subtopic

Figure 14 shows the relationships inside the “I/O con-
troller” subtopic and the links from this subtopic to the oth-
ers.

Figure 14: Graph showing the links inside the “I/O
controller” subtopic.

Inside the subtopic we find four very strong connections.
24 students used the link between the I/O controller and
the I/O registers in their concept maps (almost 73% of the
students). Also, although these concepts were not in the

71

concept list given, 19 (57.5%), 17 (51.5%), and 20 (60.6%)
students linked the I/O registers to the control register, data
register and status register respectively.

While most of the students correctly link the I/O con-
troller to its I/O registers and even specify that these are
the control, data, and status registers, only 6 (18%) said
that the control instructions are read from the control reg-
ister, and 4 (12%) that the I/O controller is what performs
this operation.

Moreover, at least 4 (12%) students used the concept
memory mapped but did not link it to any of the concepts in
its own subtopic, they only linked it to the concept memory
in the “System” subtopic.

4.3 Connections inside the “Synchronization”
subtopic

Figure 15 shows the relationships inside the “Synchroniza-
tion” subtopic. Two I/O synchronization methods clearly
appear in this graph; polled I/O and interrupt-driven I/O.
Figure 15 shows only 7 links (21.2%) to Polled I/O and
interrupt-driven I/O. This is because the graph only shows
direct links inside the subtopic. However, when we also con-
sider the links from the “System” subtopic (see Figure 10),
the total number of links to Polled I/O is 20 (60.6%), and
to interrupt-driven I/O is 18 (54.5%). Therefore, more than
half of the students have distinguished the two synchroniza-
tion methods.
Polled I/O was linked by 14 students (42.4%) to Sampling

the status, which, remember, was linked to I/O registers by
5 students (15.1%) and to the status register by 8 students
(24.2%); i.e. 13 students in total (39.4%). There are no
other significant links to or from these nodes.

The net formed around the interrupt-driven I/O concept
is much bigger. It has 10 nodes in total, where only one of
them was inserted by the students; Daisy chain. This makes
it difficult to quantitatively analyze, just the direct links be-
tween concepts, because two concepts could very well be
connected by indirect links that are not considered in this
case. However, considering the strongest links (those used
by at least 8 students (24.2%)), the graph can be read as
follows: interrupt-driven I/O needs I/O interrupts. The in-
terrupts can be nested interrupts. Both types of interrupts
(nested and simple) are controlled by interrupt controllers.
Interrupt controllers can enable/disable interrupts and iden-
tify interrupts, and according to interrupt priority, execute
ISRs. ISRs are in fact subroutines.

This reading seems good, but, a deeper analysis of the
linking words is needed, because, for example, the previous
sentence states that ISRs are subroutines, but the CPU
executes them directly without a subroutine call. Is that
what the linking words imply or is it something else? The
qualitative analysis needed to be able to say that is outside
of the scope of this paper.

4.4 Connections inside the“DMA” subtopic
Figure 16 shows the relationships inside the“DMA”subtopic,

where 23 students (69.7%) link DMA to DMA controller. A
concept added by the students appears in Figure 16 (trans-
fer). DMA is indeed used for large and continuous transfers
of data from a peripheral to the CPU, but only 4 students
(12%) used this link.

Figure 15: Graph showing the links inside the
“Synchronization” subtopic.

Figure 16: Graph showing the links inside the
“DMA” subtopic.

5. CONCLUSIONS AND FUTURE WORK
In this research we used concept maps to identify strengths

and weaknesses in students’ understanding of the computer
I/O subsystem. Tools from social network analysis were
used for the quantitative analysis of the merged concept
maps, and the results are shown.

The results show that in the students’ minds there are
three largely unconnected subtopics: the “I/O controller”,
the “Synchronization”, and the “DMA”. This might be
because the lectures indeed separate the three subtopics.
First the“I/O controller” is introduced. Once students know
how to read and write information in the I/O registers the
two synchronization methods are explained and the students
use them in their projects [19], and finally the students get
an introduction to the “DMA”.

Based on the results of this research we would propose
asking students explicit questions while they are developing
their project, in order for them to understand all the
different cases in which they are using the I/O registers
(when polling, when programming a peripheral, in the
interrupt service routine, etc.).

Moreover, and although DMA is not included in the project,
a problem-solving paper exercise could be designed for each
project so that the students can see the programming of the
DMA controller ; i.e. writing in the DMA controller’s I/O

72

registers, and the programming of the ISR for the DMA.
In future studies, we would like to:

• enrich the results, analyzing the links from a qualita-
tive perspective, by looking at the link words in order
to be able to say whether these links are correct or not.

• further analyze data in order to be able to say why
certain links are left out by the students.

• automate the process for analyzing a big set of concept
maps, so that the process can be easily replicable.

• analyze whether the information generated from the
concept maps and the analysis obtained from it is
reliable and whether it can be triangulated with data
collected by other means (exam scripts, interviews,
etc.)

• extend the analysis to other groups, universities, coun-
tries, in order to see whether or not the same problems
occur.

• extend the analysis procedure to other subjects.

6. ACKNOWLEDGMENTS
First of all, the authors want to thank the students

who gave us a significant amount of their time, since
without these data the research would have been impossible.
This research work has been partly funded under grant
UFI11/45 of the UPV/EHU, under project TIN2010-15549
of the Spanish Ministry, and by the grant IT395-10 of the
Department of Education, Universities and Research of the
Basque Government. We also would like to thank the
reviewers for their valuable comments and suggestions to
improve the quality of the paper.

References
[1] The Joint Task Force on Computing Curricula

(IEEE Computer Society and Association for Com-
puting Machinery). Computer Engineering 2004:
Curriculum Guidelines for Undergraduate Degree
Programs in Computer Engineering. IEEE Computer
Society Press, Los Alamitos, CA, USA, 2004. URL
http://www.acm.org/education/education/curric_

vols/CE-Final-Report.pdf. [Retrieved 06/28/2013].

[2] The Joint Task Force on Computing Curricula
(IEEE Computer Society and Association for Com-
puting Machinery). Computer Science Curricu-
lum 2008: An Interim Revision of CS 2001.
IEEE Computer Society Press, Los Alamitos, CA,
USA, 2004. URL http://www.acm.org/education/

curricula/ComputerScience2008.pdf. [Retrieved
06/28/2013].

[3] L. Cassel, M. Holliday, D. Kumar, J. Impagliazzo,
K. Bolding, M. Pearson, J. Davies, G.S. Wolffe, and
W. Yurcik. Distributed expertise for teaching computer
organization & architecture. In Working group reports
from ITiCSE on Innovation and technology in computer
science education, ITiCSE-WGR ’00, pages 111–126,
New York, NY, USA, 2001. ACM. doi: 10.1145/571968.
571973. URL http://doi.acm.org/10.1145/571968.

571973.

[4] W. Stallings. Computer Organization and Architecture:
Designing for Performance. Prentice Hall Press, 9th
edition, 2012. ISBN 978-0132936330.

[5] D.A. Patterson and J.L. Hennessy. Computer Organi-
zation and Design, 4th Ed, D. A. Patterson and J. L.
Hennessy.pdf, volume 4th. Morgan Kaufmann, 2009.
ISBN 0123744938.

[6] C. Hamacher, Z. Vranesic, S. Zaky, and N. Man-
jikian. Computer organization and embedded systems.
McGraw-Hill Science/Engineering/Math, 6th edition,
2011. ISBN 9780073380650.

[7] M. Morris Mano. Computer System Architecture.
Prentice Hall PTR, Englewood Cliffs, NJ, USA, 3rd
edition, 1993. ISBN 0131755633.

[8] E. Larraza-Mendiluze and N. Garay-Vitoria. A com-
parison between lecturers’ and students’ concept maps
related to the input/output topic in computer archi-
tecture. In Proceedings of the 12th Koli Calling In-
ternational Conference on Computing Education Re-
search, Koli Calling ’12, pages 57–66, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1795-5. doi:
10.1145/2401796.2401803.

[9] Workshop on Computer Architecture Education.
http://www4.ncsu.edu/~efg/wcaes.html. Retrieved
07/11/2013.

[10] ICER Conference. http://icer.hosting.acm.org/.
Retrieved 07/09/2013.

[11] Koli Calling international conference on comput-
ing education research. http://cs.joensuu.fi/

kolistelut/. Retrieved 07/09/2013.

[12] ITICSE Conferences. http://www.sigcse.org/

events/iticse. Retrieved 07/09/2013.

[13] IEEE Transactions on Education. URL
http://ieeexplore.ieee.org/xpl/RecentIssue.

jsp?punumber=13. [Retrieved 09/23/2013].

[14] ACM Inroads. URL http://inroads.acm.org. [Re-
trieved 09/23/2013].

[15] J.L. Donaldson, R.M. Salter, and R.E. Punch. DL-
Sys: A Toolkit for Design and Simulation of Computer
System Architecture. In Proceedings of the 2011 work-
shop on Computer architecture education, WCAE’11,
pages 0–6, 2011. URL http://www.ncsu.edu/wcae/

HPCA2011/p9-donaldson.pdf. [Retrieved 07/03/2013].

[16] N. Fujieda, T. Miyoshi, and K. Kise. SimMips–A MIPS
system simulator. In Proceedings of 2009 workshop on
computer architecture education, WCAE’09, pages 32–
39, New York, NY, USA, 2009. ACM Press.

[17] U. Ramachandran and W.D. Leahy Jr. An integrated
approach to teaching computer systems architecture.
In Proceedings of the 2007 workshop on Computer
architecture education, WCAE’07, pages 38–43, New
York, NY, USA, 2007. ACM Press.

73

http://www.acm.org/education/education/curric_vols/CE-Final-Report.pdf
http://www.acm.org/education/education/curric_vols/CE-Final-Report.pdf
http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://doi.acm.org/10.1145/571968.571973
http://doi.acm.org/10.1145/571968.571973
http://www4.ncsu.edu/~efg/wcaes.html
http://icer.hosting.acm.org/
http://cs.joensuu.fi/kolistelut/
http://cs.joensuu.fi/kolistelut/
http://www.sigcse.org/events/iticse
http://www.sigcse.org/events/iticse
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=13
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=13
http://inroads.acm.org
http://www.ncsu.edu/wcae/HPCA2011/p9-donaldson.pdf
http://www.ncsu.edu/wcae/HPCA2011/p9-donaldson.pdf

[18] E. Larraza-Mendiluze and N. Garay-Vitoria. The
Learning Outcomes of the Exam Question in the In-
put/Output Topic in Computer Architecture. In Learn-
ing and Teaching in Computing and Engineering (LaT-
iCE), 2013, pages 212–215, 2013. doi: 10.1109/
LaTiCE.2013.13.

[19] E. Larraza-Mendiluze, N. Garay-Vitoria, J.I. Mar-
tin, J. Muguerza, T. Ruiz-Vazquez, I. Soraluze, J.F.
Lukas, and K. Santiago. Game-Console-Based Projects
for Learning the Computer Input/Output Subsys-
tem. IEEE Transactions on Education. URL http:

//dx.doi.org/10.1023/A:1003028902215. [Accepted
for publication. Retrieved 06/28/2013].

[20] N.J. Cooke. Varieties of knowledge elicitation tech-
niques. International Journal of Human-Computer
Studies, 41(6):801 – 849, 1994. ISSN 1071-
5819. doi: http://dx.doi.org/10.1006/ijhc.1994.
1083. URL http://www.sciencedirect.com/science/

article/pii/S1071581984710834.

[21] J.D. Novak and A.J. Cañas. The theory Underlying
Concept Maps and How to Construct Them. Tech-
nical Report IHMC CmapTools 2006-01 Rev 01-2008,
Florida Institute for Human and Machine Cognition,
2008. URL http://cmap.ihmc.us/Publications/

ResearchPapers/TheoryUnderlyingConceptMaps.pdf.
[Retrieved 06/28/2013].

[22] K. Sanders, J. Boustedt, A. Eckerdal, R. McCartney,
J. E. Moström, L. Thomas, and C. Zander. Student
understanding of object-oriented programming as ex-
pressed in concept maps. ACM SIGCSE Bulletin, 40
(1):332, Feb 2008. doi: 10.1145/1352322.1352251.

[23] A. Mühling and P. Hubwieser. Towards software-
supported large scale assessment of knowledge devel-
opment. In Proceedings of the 12th Koli Calling In-
ternational Conference on Computing Education Re-
search, Koli Calling ’12, pages 145–146, New York, NY,
USA, 2012. ACM Press. ISBN 978-1-4503-1795-5. doi:
10.1145/2401796.2401818.

[24] D. McLinden. Concept maps as network data: Analysis
of a concept map using the methods of social network
analysis. Evaluation and Program Planning, 36(1):40 –
48, 2013. ISSN 0149-7189. doi: 10.1016/j.evalprogplan.
2012.05.001.

[25] L. Freeman, M. Everett, and S. Borgatti. UCINET
software. URL https://sites.google.com/site/

ucinetsoftware/home. [Retrieved 07/03/2013].

[26] A. Vlado. Networks / Pajek: Program for Large
Network Analysis. URL http://vlado.fmf.uni-lj.

si/pub/networks/pajek/. [Retrieved 07/03/2013].

[27] GaLan Group. CM-ED (Concept Maps EDitor).
URL http://galan.ehu.es/Galan/node/34. [Re-
trieved 07/03/2013].

[28] W. de Nooy, A. Mrvar, and V. Batagelj. Exploratory
Social Network Analysis with Pajek. Structural Anal-
ysis in the Social Sciences. Cambridge University
Press, 2005. ISBN 9780521602624. URL http://

books.google.es/books?id=beRRM_GH1YkC. [Retrieved
07/03/2013].

[29] V. Batagelj and A. Mrvar. Pajek, Program for
Analysis and Visualization of Large Networks, Ref-
erence Manual. URL http://vlado.fmf.uni-lj.si/

pub/networks/pajek/doc/pajekman.pdf. [Retrieved
07/03/2013].

[30] E. Santhanan, C. Leach, and C. Dawson. Concept
mapping: How should it be introduced, and is there
evidence for long term benefit? Higher Education, 35
(3):317–328, 1998. URL http://dx.doi.org/10.1023/

A:1003028902215. [Online; accessed 28/06/2013].

[31] D. Gentner and A.L. Stevens. Mental Mod-
els. Cognitive Science - Lawrence Erlbaum Asso-
ciates. Lawrence Erlbaum Associates, 1983. ISBN
9780898592429. URL http://books.google.es/

books?id=QFI0SvbieOcC. [Retrieved 07/03/2013].

74

http://dx.doi.org/10.1023/A:1003028902215
http://dx.doi.org/10.1023/A:1003028902215
http://www.sciencedirect.com/science/article/pii/S1071581984710834
http://www.sciencedirect.com/science/article/pii/S1071581984710834
http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf
http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf
https://sites.google.com/site/ucinetsoftware/home
https://sites.google.com/site/ucinetsoftware/home
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://galan.ehu.es/Galan/node/34
http://books.google.es/books?id=beRRM_GH1YkC
http://books.google.es/books?id=beRRM_GH1YkC
http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/pajekman.pdf
http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/pajekman.pdf
http://dx.doi.org/10.1023/A:1003028902215
http://dx.doi.org/10.1023/A:1003028902215
http://books.google.es/books?id=QFI0SvbieOcC
http://books.google.es/books?id=QFI0SvbieOcC

Exploring Misconceptions of Operating Systems

in an Online Course
Sonia Pamplona

Computer Science Department
Universidad a Distancia de Madrid

Carretera de La Coruña, Km. 38,500
28400 Collado Villalba, Madrid, Spain

sonia.pamplona@udima.es

Nelson Medinilla
Computer Languages and Systems and

Software Engineering Department
Universidad Politécnica de Madrid

28660 Boadilla del Monte, Madrid, Spain
nelson@fi.upm.es

Pamela Flores
Computer Languages and Systems and

Software Engineering Department
Universidad Politécnica de Madrid

28660 Boadilla del Monte, Madrid, Spain
pamela.flores@fi.upm.es

ABSTRACT

Operating Systems is a difficult subject to learn; however, little is
known about these difficulties, as they have not been studied or
determined by the relevant literature. The objective of this article
is to specify the most difficult concepts for understanding the
subject and misconceptions that students have regarding these
concepts. The study was conducted through an online university
over the course of an entire semester. The research data comes
from the evaluations taken by nine students, which have been
analyzed using qualitative methods. The most difficult concepts
for students to understand include concurrent computing and the
mechanisms to change the program that the processor is running
(interrupts, context switches, system calls, etc.). Six
misconceptions regarding these concepts have been identified,
helping to determine the specific problems that need to be
resolved.

Categories and Subject Descriptors
D.4.0 [Operating Systems]: General; K.3.2 [Computers and
Education]: Computers and Information Science Education—
Computer Science Education.

General Terms
Human Factors

Keywords
Misconceptions, e-learning, online learning, Operating Systems.

1. INTRODUCTION
The literature, teachers and students agree that Operating Systems
is a difficult subject. However, the difficulties and their causes are
unknown. Traditional studies on teaching and learning operating
systems only describe practical experiences without a theory that
explains why certain tools or techniques facilitate learning better
than others.

Our work seeks to advance a key issue for research in science
education: identifying misconceptions that interfere with the
learning process. Specifically, our objective is to study concept
comprehension in an Operating Systems course and the causes for
difficulties that prevent students from adequately learning this
subject in an online learning environment.

This work is part of a broader qualitative study that includes
analyzing documents in addition to those referenced herein.

Misconception is an important area of research for science
education; its development initially began in physics [13].
Currently, references in diverse fields abound [28]. In computer
science education research, concept comprehension in computer
programming has been studied, including such concepts as
assignment and sequence [36, 37], logical sentences [39],
functions and parameter passing [19, 37], concurrent
programming [18], semaphores [15], and object-oriented
programming [37].

2. RELATED WORK
Fifty-nine studies on operating systems were considered that
discuss such topics as teaching and learning methodologies in an
Operating Systems course. To avoid over-extending this analysis,
this section only describes studies published in the main
conferences and journals for computer science education research
from 1995 to the current year (2013). We systematically analyzed
the following aspects for each study: the year of publication,
course content on operating systems and proposed problems and
solutions.

Analyzing the temporal dimension shows that such publications
are continuous, and the interest in learning Operating Systems is
valid.

By analyzing the operating systems course content and comparing
it with the studies, we show that the course content herein is
consistent with previous studies and the curriculum objective, as
well as content recommended by the ACM/IEEE-CS Joint Task
Force [1]. Therefore, the operating systems course can be used as
a reference.

The primary operating systems course themes are as follows:
management, scheduling, process synchronization, memory
management, I/O management and file management. In addition,
the studies analyzed afforded special importance to the following
concepts: system calls, deadlock, semaphores, virtual memory
and disk-scheduling algorithms.

Though the studies considered herein concur that the subject is
difficult, they generally detail neither the specific difficulties nor
possible causes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
Koli Calling '13, November 14 - 17 2013, Koli, Finland
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2482-3/13/11…$15.00.

75

The common objective for such studies was to facilitate teaching
and/or learning of a subject through various proposals. Next, we
describe the general solutions proposed .

 To develop code for the kernel in a real operating
system, such as UNIX [27], Linux [16] and Android [3].

 To develop programs that do not entail modification of
an operating system (using system calls and accessing
the operating system data structure) to facilitate
comprehension of the primary concepts discussed in the
coursework [40].

 To use simulators that facilitate student exploration of
operating system function without writing code [20]
[24] [29–33].

 To motivate learning course materials via competing at
cooperative online games [14].

 To analyze code in short programs with an unexpected
result for the student to discern the causes of such
behavior and delve into the course concepts [41].

 To perform experiments that measure operating system
service performance and infer information about their
implementation based on the results [10].

 To improve student academic performance using
cooperative and problem-based learning [26].

 To improve concept comprehension and increase
student interest using active learning techniques
(observing and analyzing behavior in real operating
systems and programming exercises) [17].

The preceding solutions are proposed without explaining why or
how they aid in learning, and they lack a theoretical foundation.
Research on operating system education is at an earlier phase
compared with other areas in computer science education
research, such as programming [12].

To move forward, our work focuses on a basic goal: to determine
the causes of learning difficulties for operating systems by
studying student comprehension. The research herein was
performed in an exclusively online learning environment, which
also distinguishes this study from previous studies in classroom
environments.

3. THEORETICAL FRAMEWORK
The goal of the Operating Systems course is that the student
understands the concepts taught and use such ideas to solve new
problems, pose new questions or facilitate learning with new
subject matter. This type of learning is meaningful learning, and it
differs from rote learning, in which the student is limited to
remembering the material in a manner similar to its presentation
[21].

Bloom’s revised taxonomy [2] is an adequate theoretical
framework for meaningful learning because it describes cognitive
processes and understanding levels, such that it aids in creating
objectives and evaluation tests consistent with the course goals.

Bloom’s original taxonomy [5] includes only one dimension,
while the revised taxonomy has two dimensions: cognitive
process and knowledge. The first dimension comprises nineteen

cognitive processes organized in six categories: remember,
understand, apply, analyze, evaluate and create. This dimension is
critically important to our study because it allows us to
differentiate the two aforementioned types of learning. Rote
learning is related to remembering, and meaningful learning is
related to the five remaining categories.

The second dimension includes four different types of knowledge:
factual, conceptual, procedural and metacognitive. The current
work is within the conceptual understanding dimension, which is
related to bodies of extensive and organized content, such as
concepts, principles, models and theories.

4. RESEARCH QUESTIONS
The purpose of this work was to study concept comprehension for
Operating Systems with the ultimate goal of improving the
learning with such subject matter. The following research
questions guided the study.

 What concepts about operating systems are most
difficult to comprehend?

 What alternative conceptions do students have about
such concepts?

Next, we define the terms underlying the research questions:

 We utilize the term concept broadly, including ideas,
objects or events that aid in understanding our
environment [11].

 We define alternative conceptions as conceptions that
are clearly incompatible with the accepted conceptions
but are maintained persistently, even after instruction
[1]. We prefer this general term over additional terms
from the literature (e.g., misconceptions,
misunderstandings and mistakes).

5. METHODOLOGY
This study was performed using a qualitative-research
methodology. The qualitative data analyzed is from three tests
with multiple-choice questions, wherein the students had to justify
their answers.

The research herein is part of a qualitative case study, wherein
additional data sources were analyzed.

5.1 Setup
The study was conducted using Operating Systems coursework
for the second course of a computer engineering degree at an
online university. The length of the course was 14 weeks from
October 2012 to February 2013.

Next, the online learning course environment, the course manual
and the activities performed by the students throughout the
coursework are described.

5.1.1 Online learning environment
The online condition yields special characteristics to the study.
On one hand, it is more challenging for the researcher to perceive
difficulties because the student cannot be directly observed. On
the other hand, the study is more aseptic with respect to the
professor influence on the difficulties observed.

The conditions for the online course were as follows.

 The students had a virtual classroom through the
learning management system Moodle, which included
all of the course materials and activities.

76

 The virtual classroom provided a mechanism for
interaction with the professor and other students
enrolled in the course (forums).

 The students had a weekly schedule that included 8
hours in which they could contact the professor via
telephone.

 The course was exclusively online, without in-person
classes or video lectures in the virtual classroom.

 The activities the students used for learning were
reading the manual and instructional activities. Both
materials are described next.

5.1.2 Course manual
The course manual was expressly created for this subject with
following characteristics.

 The manual contains the necessary information for
students to perform the activities and tests in the course.
However, this information does not include direct
answers to the activities; the answers require that the
student perform higher cognitive processes, such as
interpreting, inferring, comparing and explaining. To
pass the tests, the students must engage in meaningful
learning, beyond the cognitive processes recognizing
and remembering.

 Given that the objective of this study includes
understanding whether the students comprehend the
essential concepts discussed during the coursework and
do not merely memorize such information, the manual
could be used during each tests, including the final in-
person evaluation test. Thus, if a student does not
adequately answer a question, it is more likely that the
problem is not a failure in recognition or memory.

 The manual was constructed in accordance with the
curriculum recommended by the ACM/IEEE-CS Joint
Task Force [1] and includes the following chapters.

1. Introduction to operating systems

2. Process management

3. Process scheduling

4. Communication and synchronization of
processes

5. Memory management

6. I/O management

7. File management

8. Protection and security

9. Case study 1: UNIX/Linux

10. Case study 2: Windows 7

5.1.3 Tests
The tests given to the students in this course were as follows.

 A questionnaire on initial knowledge.

 Installing and using the Linux operating system.

 Three tests with ten multiple-choice questions.

 Two instructional activities with classic operating-
system problems.

 An instructional activity using a simulator [24].

As mentioned above, this work only used tests with multiple-
choice questions. For the full case study, the remaining course
activities will be analyzed.

5.2 Data Collection
5.2.1 Sample
The sample comprises 9 students out of 13 enrolled in the course.
The students selected include those who performed the
instructional activities expected during development of the
coursework (i.e., they did not withdraw from the course).

5.2.2 Evaluation Questionnaires
To answer the research questions, we designed three formative
tests [6] with 10 multiple-choice questions. The tests correspond
to the course manual content as follows.

 Questionnaire I. Introduction to operating systems and
process management.

 Questionnaire II. Process scheduling. Process
communication and synchronization.

 Questionnaire III. Memory management. I/O
management. File management.

After answering each multiple-choice question, the student should
justify his/her response by expounding on the basis for their
selection. The students were asked to include a justification to
explain their thought processes.

The questionnaires were created using the quiz tool existing in the
moodle learning environment. The students had two weeks and
two attempts at the questionnaire. When the student selected the
incorrect answer, they received feedback.

Because the primary goal was to evaluate student comprehension
of concepts from subject matter commonly included in “operating
systems”, the questionnaires were constructed based on the
questions in the primary course textbook.

The process used to elaborate the questionnaires was as follows.

 The revised Bloom’s taxonomy was used to classify all
the multiple-choice questions included in the following
textbooks [7] [8] [25] [9] [35] [38].

 The questions were selected using the following criteria.

o The question content corresponds to the
content established by the questionnaire.

o The answers entail meaningful learning (i.e.,
the answers were not exclusively limited to
the cognitive processes recognition and
memory).

 The question terminology was adapted to the course
manual used herein.

Tables 1, 2 and 3 show the following information for each
questionnaire: the origin of each question, the cognitive process
required to answer the question, the question’s specific learning
objective and, finally, the corresponding learning objective
proposed by ACM/IEEE.

77

Table 1. Questionnaire 1

 Origin Category Cognitive
process

Learning objective Related ACM/IEEE objective

1 Exercise 1.4
Page 8 [25]

Understand Inferring Understand the operating system function OS/OverviewOfOperatingSystems
Learning Objective 1

2 Instructor Companion
Site. Test bank
Chapter 1 Question 1
[35]

Understand Interpreting Understand the operating system function OS/OverviewOfOperatingSystems
Learning Objective 1

3 Question 1.24.
Page 52 [7]

Understand Interpreting Explain a system call OS/Operating SystemPrinciples
Learning Objective 4

4 Question 1.19.
Page 51 [7]

Understand Inferring Infer the dual operation mode purpose OS/OperatingSystemPrinciples
Learning Objective 5

5 Question 1.33.
Page 53 [7]

Understand Comparing Compare different I/O types OS/DeviceManagement
Learning Objective 5

6 Testbank. Chapter 1
Multiple choice
questions
Question 11 [38]

Understand Interpreting Understand the mode wherein multi-
programming increases processor performance

OS/Concurrency
Learning Objective 3

7 Testbank. Chapter 3
TRUE/FALSE
Questions
Question 3 [38]

Understand Inferring Infer the repercussions that a design change can
cause in the structure or semantics of a process
control block (PCB)

OS/Concurrency
Learning Objective 4

8 Testbank. Chapter 1
TRUE/FALSE
Questions
Question 8 [38]

Understand Inferring Infer how interrupts aid in improving processor
utilization

OS/Concurrency
Learning Objective 6

9 Instructor resources
TEST N1 Question 20
[8]

Understand Inferring Infer the situations wherein interrupts should be
inhibited

OS/Concurrency
Learning Objective 6

10 Instructor Companion
Site. Test bank
Chapter 3 Question 7
[35]

Understand Interpreting Understand the situations wherein a process is in
the “Ready” state.

OS/SchedulingAndDispatch
Learning Objective 1

Table 2. Questionnaire 2

 Origin Category Cognitive
process

Learning objective Related ACM/IEEE objective

1 Page 9. Question 1.2.4.
[9]

Understand Inferring Infer circumstances and events that cause a
process switch

OS/Concurrency
Learning Objective 3

2 Instructor resources
TEST N1 Question 21
[8]

Understand Inferring Infer the maximum number of processes that
can remain blocked in a semaphore booted
with a value of 2

OS/Concurrency
Learning Objective 5

3 Page 75. Question 3.2.2.
[9]

Understand Interpreting Interpret the signal operation code for a
semaphore

OS/Concurrency
Learning Objective 5

4 Page 75. Question 3.2.7.
[9]

Understand Inferring Infer whether it is possible to execute two,
consecutive wait operations on a semaphore

OS/Concurrency
Learning Objective 5

5 Instructor Resources
TEST N5 Question 21
[8]

Apply Implementing Calculate the number of resources necessary to
avoid deadlock in a system with 3 processes
such that each requires 3 units of a given
resource type

OS/Concurrency
Learning Objective 9

6 Instructor Resources
TEST N3 Question 19
[8]

Understand Inferring Infer whether a given process-scheduling
algorithm can cause resource starvation

OS/SchedulingAndDispatch
Learning Objective 1

7 Instructor Resources
TEST N4 Question 7 [8]

Understand Inferring Infer which transition is invalid between
process states in a non-preemptive scheduling
algorithm

OS/SchedulingAndDispatch
Learning Objective 1

8 Testbank. Chapter 9
TRUE/FALSE
Questions
Question 8 [38]

Understand Inferring Infer whether the FCFS algorithm is better for
short than long processes

OS/SchedulingAndDispatch
Learning Objective 1

9 Page 8. Question 1.2.1.
[9]

Understand Inferring Infer the time to affect process-scheduling
algorithms (ready queue, queue for processes
in execution or queue for blocked processes)

OS/SchedulingAndDispatch
Learning Objective 1

10 Question 2.26.
Page 87 [7]

Understand Interpreting Interpret the characteristics of the SJF
algorithm

OS/SchedulingAndDispatch
Learning Objective 1

78

Table 3. Questionnaire 3

 Origin Category Cognitive
process

Learning objective Related ACM/IEEE objective

1 Instructor Resources
TEST N3 Question 32 [8]

Apply Implementing Select the disk scheduling algorithm most
appropriate for a given situation

OS/SchedulingAndDispatch
Learning Objective 7

2 Question 6.31.
Page 267 [7]

Apply Implementing Select the disk scheduling algorithm most
appropriate for a given situation

OS/SchedulingAndDispatch
Learning Objective 7

3 Instructor Resources
TEST N2 Question 15 [8]

Apply Executing Apply the elevator algorithm with variant C-
SCAN to a given situation

OS/SchedulingAndDispatch
Learning Objective 7

4 Instructor Resources
TEST N1 Question 28 [8]

Apply Executing Given a system with virtual memory, calculate
the page faults produced by the LRU algorithm
in a given situation

OS/MemoryManagement
Learning Objective 2

5 Instructor Resources
TEST N1 Question 23 [8]

Understand Inferring Given a virtual memory system, infer the
maximum move in the clock algorithm during
the selection of a page

OS/MemoryManagement
Learning Objective 2

6 Page 33. Question 2.2.3.
[9]

Understand Inferring Infer what limits the size of programs in an
operating system with virtual memory

OS/MemoryManagement
Learning Objective 2

7 Instructor Resources
TEST N3 Question 27 [8]

Understand Inferring Infer the main purpose of the introduction of
virtual memory

OS/MemoryManagement
Learning Objective 2

8 Page 14. Question 5.2.4.
[9]

Understand Inferring Infer what I/O technique is more efficient OS/DeviceManagement
Learning Objective 5

9 Page 165. Question 6.2.1.
[9]

Understand Inferring Inferring the implications of assigning non-
continuous blocks to store a file

OS/FileSystems
Learning Objective 2

10 Page 165. Question 6.2.2.
[9]

Understand Inferring Inferring the implications of using linked
allocation as a method of allocating space for
files

OS/FileSystems
Learning Objective 2

5.3 Analysis
The data were analyzed in three phases using the ATLAS.ti,
qualitative analysis software [23].

In the first analysis phase, we developed a code [34] for each
answer that is not entirely correct. Thus, it is important to
remember that each multiple-choice question has two parts:
answer selection and the reasoning used. Next, we describe the
form for the aforementioned coding.

Answer selection:

• If the answer was correct, no code was created because
difficulties were not detected.

• If the answer was incorrect, a code was created that
represented the student’s answer (e.g., “The change of
process always originates with a clock interrupt”).

• If the question was blank, a code was created that
reported the question as unanswered (e.g., “does not
answer which transition between states of a process
cannot occur in a non-preemptive, scheduling
algorithm”).

Answer justification:

• If the justification was correct, no code was created
because difficulties were not detected.

• If the justification was incorrect, a code was created,
wherein the justification and answer were combined
(e.g., “The same process cannot execute two wait
operations on a semaphore because this operation is
indivisible or atomic”).

• If there was no justification, a code was created that
reported answer as unjustified (e.g., “does not justify
why it is possible to execute two consecutive wait
operations on a semaphore”).

The second analysis phase was used to codify patterns [22]. In
this phase, we identified the possible causes for incorrect answers,
and we grouped the codes with a common cause. This grouping
facilitated the results for the second research question: alternative
student conceptions.

Finally, in the third phase, the codes from the previous phase
related to the same concept were grouped, and an answer to the
first research question was generated, identifying the operating-
system concepts that are more difficult to comprehend.

6. RESULTS
The operating-system concepts that were more difficult for the
students to comprehend in our study are mechanisms to change
the program that is running the processor, as well as concurrent
computing. Six misconceptions regarding these concepts have
been identified (Table 4).

Next, each concept and the alternative student conception are
discussed. The alternative conceptions are treated systematically:
first, the alternative student conception is presented, and later, we
explain how it is incompatible with the accepted conception. Last,
the students’ answers that are related to the alternative conception
are presented.

The questions shown in this section could be seen in Tables 5 and
6.

79

Table 4. Results

Concepts most difficult to comprehend Alternative conceptions around these concepts

A. Mechanisms to change the program
that the processor is running

A.1. Identifying the interrupt and process switch concepts

A.2. Simplistic conception of the purpose for interrupts

A.3. Simplistic conception of I/O operations

B. Concurrent computing

B.1. Concurrent computing of various processes is deterministic

B.2. Relating the deadlock concept with the lock concept

B.3. Conception of the semaphore influenced by common sense

6.1 Concept: mechanisms to change the
program that is running the processor
The most important difficulty in this study is related to code
alternation mechanisms (interrupts, context switches, system
calls, etc.). For this concept, the students produced the following
alternative conceptions.

1. Identifying the interrupt and process switch concepts

The students identified an interrupt with a process switch; they
believe that an interrupt must correlate with a process switch.

However, interrupts and process switches are two different
concepts, and one is not necessarily caused by the other. An
interrupt does not always cause a process switch. For example, an
I/O interrupt may yield one process ready for execution.
However, the process will not be executed until it is selected by
the scheduler. A process switch is also not necessarily caused by
an interrupt. For example, when a higher-priority process arrives
in a system with a preemptive scheduling algorithm, this process
is immediately executed.

We found this alternative conception in four students and in
answers to two different questions.

On one hand, three students answered question 1 on the second
questionnaire similarly: “a process switch is always caused by a
clock interrupt”. The justifications for their answers are as
follows.

 “Because an interrupt serves to carry out a process switch, among
other things.”

 “Every clock interrupt is correlated to a process switch”.

The third student does not justify the answer.

On the other hand, in the second questionnaire, a student
answered question 7 correctly but justified his/her response as
follows: “when the algorithm is non-preemptive, it cannot yield a
transition from execution to ready because the process does not
wait on interrupts”. In this assertion, the student utilized the term
“interrupt” to refer to a process switch. In reality, the arrival of a
higher-priority process would generate a process switch, but no
interrupt would exist.

2. Simplistic conception of the purpose for interrupts

The students understand interrupts simplistically as a mechanism
for changing the program that is executed at the moment and
ignore its effects on system performance, specifically on I/O time
use.

Interrupts are an efficient mechanism for communicating with the
processor. Specifically, I/O interrupts allow the processor to
execute other instructions while an I/O operation is in progress.
An interrupt alerts the processor that the operation has ended or
notifies it of an error. Not knowing such information significantly
affects comprehension of operating system function, as discussed
next.

We found this alternative conception in 3 students and in the
answers to one question.

Two students answered question 8 in the first questionnaire
similarly: “interrupts do not serve to improve processor
utilization”. Their justifications were as follows.

“Interrupts do not serve to improve processor utilization because
they serve to change to the operating system privileged mode”.

“Interrupts do not serve to improve processor utilization because
an interrupt is a temporary program suspension, and if there are
many interrupts, processes will be executed slower because the
processor will be devoted to addressing such interrupts”.

Another student answered correctly, but he did not have the
arguments to justify the answer (i.e., the student did not explain
why the interrupts serve to improve processor utilization).

3. Simplistic conception of I/O operations

The students do not know the sequence of events that occur
during an I/O operation.

When a process initiates an I/O operation it stopped his execution
and get blocked waiting for an interrupt arrival, which would
indicate operation completion. During that wait time, the
processor can continue executing additional processes to increase
the system performance. When the I/O operation ends, the process
is ready for execution and waits its turn on the processor.

We found this alternative conception in answers from 2 students
and to three questions.

A student gave the following answer to question 7 from
questionnaire two: “the transition ‘blocked-executing’ cannot
occur in a non-preemptive scheduling algorithm because the
process can only proceed from the ‘executing’ state to the
‘finished’ state”.

In this answer, the student disregards I/O operation mechanisms;
any process is blocked when an I/O operation begins independent
of the scheduling system type.

Another student offers the following answers to questions 6 and
10 from questionnaire one, respectively.

80

Table 5. Questions related with the results section (Questionnaire 1)

 Origin Question Category Cognitive
process

6 Testbank. Chapter 1
Multiple choice questions
Question 11 [38]

In a uniprocessor system, multiprogramming increases processor efficiency by:
A. Taking advantage of time wasted by long wait interrupt handling
B. Disabling all interrupts except those of highest priority
C. Eliminating all idle processor cycles.

Understand Interpreting

8 Testbank. Chapter 1
TRUE/FALSE Questions
Question 8 [38]

Interrupts are provided primarily as a way to improve processor utilization.
A. True.
B. False.

Understand Inferring

9 Instructor resources
TEST N1 Question 20 [8]

What code do you think need to be run with interrupts inhibited?
A. None, because the interrupts could be lost.
B. All operating system code.
C. Certain critical parts of the operating system code such as context switching.

Understand Inferring

10 Instructor Companion Site.
Test bank
Chapter 3 Question 7 [35]

A process may transition to the Ready state by which of the following actions?
A. Completion of an I/O event.
B. Awaiting its turn on the CPU.
C. Newly-admitted process.
D. All of the above.

Understand Interpreting

Table 6. Questions related with the results section (Questionnaire 2)

 Origin Question Category Cognitive
process

1 Page 9. Question 1.2.4. [9] A process switch:
A. is performed by the scheduler.
B. modifies the entry in the process table of the process evicted.
C. is always caused by a clock interruption.
D. occurs whenever a process leaves the waiting process queue and enters in the
ready process queue.

Understand Inferring

4 Page 75. Question 3.2.7.
[9]

Is it possible to execute two consecutive wait operations in a semaphore?
A. Yes.
B. Yes, if they are requested by two different processes.
C. No.

Understand Inferring

5 Instructor Resources
TEST N5 Question 21 [8]

Consider a system with 3 processes so that each one of them needs 3 units of a
particular type of resource. How many units of that resource must exist at least
to avoid the deadlock?
A. 6.
B. 7.
C. 8.
D. 9.

Apply Implementing

7 Instructor Resources
TEST N4 Question 7 [8]

Which of the following transitions between states of a process can not occur in a
system with a non-preemptive scheduling algorithm?
A. Blocked to Ready.
B. Running to Ready.
C. Running to Blocked.
D. Ready to Running.

Understand Inferring

The student does not justify why multiprogramming in
monoprocessor systems increases the processor performance
through the I/O wait time.

Completion of an I/O operation cannot cause a process to proceed
to the ready state.

To conclude, we show a difficulty that may be related to the three
aforementioned alternate conceptions.

Four students did not explain nor justify why certain critical parts
of the operating system, such as the process switch, should be
executed with interrupts inhibited (question 9 from questionnaire
one).

6.2 Concept: Concurrent computing
The second and last group of difficulties found in this study
regards concurrent computing.

The following describes the students’ misconceptions regarding
this concept:

1. Concurrent computing of various processes is deterministic

Students consider concurrent computing to be deterministic; in
other words, the different programs are always executed in the
same order and consequently always produce the same results.

Nevertheless, generally in concurrent computing, the order in
which different processes are executed cannot be determined. For
example, the concurrent execution of various processes can
sometimes cause deadlock, and other times it does not.
Consequently, in order to detect possible deadlock situations, it is
necessary to explore all the possibilities that may arise during
execution. Following are two examples in which students
determine if a deadlock could exist by analyzing a single situation
(question 5 from questionnaire two).

81

“If there are 3 processes and each process needs 3 units of a type
of resource, a minimum of 6 units is needed. Therefore, two
processes use the 3 units of the resource they need and the third
has to wait until the 3 units it needs are available.”

“If there are 3 processes and each process needs 3 units of a type
of resource, a minimum of 8 units is needed. Therefore, two
processes use the 3 units of the resource they need and the third
process has to wait until one of the units used by the other
processes becomes available."

2. Relating the deadlock concept with the lock concept

Students treat the concepts of lock and deadlock as if they were
synonymous.

Nevertheless, the concepts are different and the differences
between them are about the duration of the lock state and its
cause. For example, a lock is created when a process stops
executing because it is waiting its turn to use a certain resource.
The condition of a deadlock is more serious, as the duration of the
lock is permanent and its cause is another process that is also
locked, waiting for a resource. In other words, in a deadlock, there
are at least two indefinitely locked processes. When one of these
processes has a resource that the other needs, it cannot make it
available because otherwise it could not continue with its
execution. A lock is evidently a natural situation in concurrent
computing, but a deadlock is a situation that must be avoided.

In the following definition of deadlock, students describe a
situation that would cause a lock for one or two of the processes,
but not a deadlock: “Because if they had fewer resources, two
processes would try to access the same resource unit, and
consequently a deadlock would be created”.

Another definition that illustrates the confusion between lock and
deadlock is as follows: “Deadlocks occur when a process needs a
resource that is not available.”

This misconception causes students to try to avoid deadlock
situations by having a number of resources that is equal to the
sum of all the resources needed during program execution
(question 5 from questionnaire two).:

“Understanding that the three processes must have simultaneous
access to 3 resource units, you would need 3 x 3 = 9 resource
units to avoid a deadlock.”

“If you want to execute the 3 processes at the same time, 9 units
are needed.”

3. Conception of the semaphore influenced by common sense

Difficulties have been encountered in understanding the classical
synchronization mechanism – the semaphore. To understand how
a semaphore works, students analyze similarities with real
situations instead of analyzing the semaphore operations code.

Nevertheless, the semaphore is a creation, a mechanism that was
invented to solve problems of synchronization between
concurrent processes. Therefore, their characteristics are defined
by their operations code and not by the similarities with real
situations.

The following is a student’s response, which explains that it is not
possible to execute two consecutive wait operations in a
semaphore (question 4 from questionnaire two). Reading the code
would have allowed the student to respond affirmatively to the
question. However, the student instead established a similarity
with a real situation, which led him to the incorrect conclusion.

“In the example of a doorman at a nightclub, when he receives the
P signal, the semaphore blocks access to more processes (people
in the club). People begin to accumulate, forming a line until the
other operation V, up, caused by a person leaving the club, allows
the first person waiting in line to enter. I believe there can only be
one wait operation because I think that one is enough and more
would be redundant.”

In the following answer, the student responded that it is possible
to execute two consecutive wait operations on one semaphore
only if they are requested by two different processes (question 4
from questionnaire two):

“In the case of a public establishment, for example, if customers
want to use the locked bathroom, they take a key, decreasing the
number of remaining available keys. Inversely, when they leave
the bathroom, they return the key, increasing the number of
available resources/bathrooms. Therefore, if there is more than
one resource, more than one wait operation or key operation can
occur at the same time, but only with different people-processes.”

7. LIMITATIONS OF THE STUDY
This study is subject to the limitations inherent to a qualitative
study [22]. Next, we discuss certain considerations for the
analyzed data, the results and the study’s objectivity.

The collected data are the answers and justifications from students
to certain questions. The relationships between these data and
students’ conceptions are hypotheses which require more course
documents to fully analyze the results.

The results depend on the questions, knowledge of each student
and instructional activities the students performed during the
course.

The following facts support the study’s objectivity.

• The methods and procedures of the study are described
explicitly and in detail.

• The data collection and processing sequence can be
followed and support the conclusions.

• The results are explicitly related to the source data.

8. CONCLUSIONS AND FUTURE WORK
The study objectives have been met, providing answers to the
proposed research questions. The operating systems concepts that
are more difficult to understand in the studied online course
include code alternation mechanisms (interrupts, context switches,
system calls, etc.) and concurrent computing. Furthermore, six
misconceptions regarding these concepts have been identified,
which has helped to determine the specific difficulties associated
with a course in operating systems. The misconceptions
discovered regarding concurrent computing support the results of
papers [15] and [4]. The other misconceptions identified in our
study have not been studied in existing literature.

The contribution of this paper is to shed light on the learning
process for the subject of Operating Systems, specifying the
difficulties encountered. This type of exploratory study has never
been conducted before in the area of Operating Systems.

This study is also an example of using qualitative research, which
is rarely used in or associated with the area of Computer Science
Education Research. This methodology is important because it
allows us to achieve a better understanding of a specific learning
scenario and explain how and why these phenomena occur. The
purpose of qualitative methodology is discovery, and it is a

82

valuable complement to quantitative research, which is more
focused on confirming hypotheses.

This paper is part of a qualitative case study of an online course in
the subject of Operating Systems over the course of a semester.
The next step would be to conduct an analysis of the other course
documents to supplement the results obtained from this study.

9. REFERENCES
[1] ACM/IEEE-CS Joint Interim Review Task Force 2008.

Computer Science Curriculum 2008: An Interim Revision of
CS 2001, Report from the Interim Review Task Force.

[2] Anderson, L.W., Krathwohl, D.R., Airasian, P.W.,
Cruikshank, K.A., Mayer, R.E., Pintrich, P.R., Raths, J. and
Wittrock, M.C. 2000. A Taxonomy for Learning, Teaching,
and Assessing: A Revision of Bloom’s Taxonomy of
Educational Objectives, Abridged Edition. Allyn & Bacon.

[3] Andrus, J. and Nieh, J. 2012. Teaching operating systems
using android. Proceedings of the 43rd ACM technical
symposium on Computer Science Education - SIGCSE ’12
(New York, New York, USA, Feb. 2012), 613.

[4] Ben-David Kolikant, Y. 2004. Learning concurrency:
evolution of students’ understanding of synchronization.
International Journal of Human-Computer Studies. 60, 2
(Feb. 2004), 243–268.

[5] Bloom, B.S. and Krathwohl, D.R. 1956. Taxonomy of
Educational Objectives: the Classification of Educational
Goals, Handbook I: Cognitive Domain. Addisson-Wesley.

[6] Bloom, B.S., Madaus, G.F. and Hastings, J.T. 1981.
Evaluation to improve learning. McGraw-Hill.

[7] Candela, S., García, C.M., Quesada, A., Santana, F.J. and
Santos, J.M. 2007. Fundamentos de sistemas operativos:
teoría y ejercicios resueltos. Editorial Paraninfo.

[8] Carretero, J., García, F., De Miguel, P. and Pérez, F. 2007.
Sistemas Operativos. Una visión aplicada. McGraw-Hill.

[9] Casillas, A. and Iglesias, L. 2004. Sistemas operativos:
problemas y ejercicios resueltos. Pearson.

[10] Downey, A.B. 1999. Teaching experimental design in an
operating systems class. SIGCSE ’99 The proceedings of the
thirtieth SIGCSE technical symposium on Computer science
education (New York, New York, USA, Mar. 1999), 316–
320.

[11] Eggen, P.D. and Kauchak, D.P. 2012. Educational
Psychology: Windows on Classrooms (9th Edition). Pearson.

[12] Fincher, S. and Petre, M. 2004. Computer Science Education
Research. Taylor & Francis.

[13] Hestenes, D., Wells, M. and Swackhamer, G. 1992. Force
concept inventory. The Physics Teacher. 30, 3 (Mar. 1992),
141.

[14] Jong, B.-S., Lai, C.-H., Hsia, Y.-T., Lin, T.-W. and Lu, C.-Y.
2013. Using Game-Based Cooperative Learning to Improve
Learning Motivation: A Study of Online Game Use in an
Operating Systems Course. IEEE Transactions on Education.
56, 2 (May 2013), 183–190.

[15] Kolikant, Y.B.-D., Ben-Ari, M. and Pollack, S. 2000. The
anthropology of semaphores. Proceedings of the 5th annual
SIGCSE/SIGCUE ITiCSEconference on Innovation and
technology in computer science education - ITiCSE ’00
(New York, New York, USA, Jul. 2000), 21–24.

[16] Laadan, O., Nieh, J. and Viennot, N. 2011. Structured linux
kernel projects for teaching operating systems concepts.
Proceedings of the 42nd ACM technical symposium on
Computer science education - SIGCSE ’11 (New York, New
York, USA, Mar. 2011), 287.

[17] Lincke, S.J. 2005. Creating Interest in Operating Systems via
Active Learning. Proceedings Frontiers in Education 35th
Annual Conference (2005), S3C–7–S3C–10.

[18] Lönnberg, J. and Berglund, A. 2007. Students’
understandings of concurrent programming. Koli Calling
’07 Proceedings of the Seventh Baltic Sea Conference on
Computing Education Research - Volume 88 (Nov. 2007),
77–86.

[19] Madison, S.K. 1995. A Study of College Students’ Construct
of Parameter Passing Implications for Instruction. PhD
thesis, U. Of Wisconsin.

[20] Maia, L.P., Machado, F.B. and Pacheco, A.C. 2005. A
constructivist framework for operating systems education.
Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science education -
ITiCSE ’05 (New York, New York, USA, Jun. 2005), 218.

[21] Mayer, R.E. 1998. The Promise of Educational Psychology:
Learning in the Content Areas. Prentice Hall.

[22] Miles, M.B. and Huberman, A.M. 1994. Qualitative Data
Analysis: An Expanded Sourcebook. SAGE Publications.

[23] Muhr, T. 2013. ATLAS.ti. (Computer software). Version 7.

[24] Mustafa, B. 2011. Visualizing the modern operating system:
simulation experiments supporting enhanced learning.
SIGITE ’11 Proceedings of the 2011 conference on
Information technology education (2011), 209–214.

[25] Pérez, F., Carretero, J. and García, F. 2003. Problemas de
sistemas operativos. De la base al diseño. McGraw-Hill.

[26] Perez Martinez, J.E., Garcia, J., Muñoz Fernandez, I. and
Sierra Alonso, A. 2010. Active Learning and Generic
Competences in an Operating Systems Course. International
Journal of Engineering Education. 26, 6 (Dec. 2010), 1484–
1492.

[27] Pérez-Dávila, A. 1995. O.S. bridge between academia and
reality. Proceedings of the twenty-sixth SIGCSE technical
symposium on Computer science education - SIGCSE ’95
(New York, New York, USA, Mar. 1995), 146–148.

[28] Pfundt, H. and Duit, R. 2009. Bibliography. Students’
Alternative Frameworks and Science Education. Institute for
Science Education at the University of Kiel.

[29] Robbins, S. 2004. A disk head scheduling simulator.
SIGCSE ’04 Proceedings of the 35th SIGCSE technical
symposium on Computer science education (Mar. 2004),
325–329.

83

[30] Robbins, S. 2007. A Java execution simulator. SIGCSE ’07
Proceedings of the 38th SIGCSE technical symposium on
Computer science education (Mar. 2007), 536–540.

[31] Robbins, S. 2005. An address translation simulator. SIGCSE
’05 Proceedings of the 36th SIGCSE technical symposium
on Computer science education (Feb. 2005), 515–519.

[32] Robbins, S. 2002. Exploration of process interaction in
operating systems. SIGCSE ’02 Proceedings of the 33rd
SIGCSE technical symposium on Computer science
education (Mar. 2002), 351–355.

[33] Robbins, S. 2001. Starving philosophers. SIGCSE ’01
Proceedings of the thirty-second SIGCSE technical
symposium on Computer Science Education (New York,
New York, USA, Feb. 2001), 317–321.

[34] Saldana, J. 2012. The Coding Manual for Qualitative
Researchers. SAGE Publications.

[35] Silberschatz, Galvin and Gagne 2011. Operating System
Concepts with JAVA. John Wiley & Sons.

[36] Simon, 2011. Assignment and sequence. Proceedings of the
11th Koli Calling International Conference on Computing
Education Research - Koli Calling ’11 (New York, New
York, USA, Nov. 2011), 10.

[37] Sirkiä, T. and Sorva, J. 2012. Exploring programming
misconceptions. Proceedings of the 12th Koli Calling
International Conference on Computing Education Research
- Koli Calling ’12 (New York, New York, USA, Nov.
2012), 19–28.

[38] Stallings, W. 2011. Operating Systems: Internals and Design
Principles (7th Edition). Prentice Hall.

[39] VanDeGrift, T., Bouvier, D., Chen, T.-Y., Lewandowski, G.,
McCartney, R. and Simon, B. 2010. Commonsense
computing (episode 6). Proceedings of the 10th Koli Calling
International Conference on Computing Education Research
- Koli Calling ’10 (New York, New York, USA, Oct. 2010),
76–85.

[40] Wagner, T.D. and Ressler, E.K. 1997. A practical approach
to reinforcing concepts in introductory operating systems.
Proceedings of the twenty-eighth SIGCSE technical
symposium on Computer science education - SIGCSE ’97
(New York, New York, USA, Mar. 1997), 44–47.

[41] Ziegler, U. 1999. Discovery learning in introductory
operating system courses. SIGCSE 99 The proceedings of
the thirtieth SIGCSE technical symposium on Computer
science education (1999), 321–325.

84

Tracing Quiz Set to Identify Novices’ Programming
Misconceptions

Takayuki Sekiya
Information Technology Center,

the University of Tokyo
3-8-1 Komaba, Meguro,

Tokyo, Japan
sekiya@ecc.u-tokyo.ac.jp

Kazunori Yamaguchi
Graduate School of Arts and Sciences,

the University of Tokyo
3-8-1 Komaba, Meguro,

Tokyo, Japan
yamaguch@graco.c.u-tokyo.ac.jp

ABSTRACT
Novice programmers’ understanding of conditional and loop
constructs are often incomplete. They seem to understand
a single conditional or single loop, but fail to understand
the combination of them. We propose a method for finding
misconceptions underlying this failure. We first developed
a tracing quiz set to locate the exact points at which stu-
dents will fail. Second, we identified some misconceptions
from experiments on five courses. Third, to use and vali-
date these misconceptions, we developed an interactive test
system which showed the correct answers to the students and
requested them to describe their explanations. The experi-
ments showed that some misconceptions affected the overall
performance of the students.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—computer science education

General Terms
Experimentation

Keywords
novice programmers, CS1, tracing, misconception

1. INTRODUCTION
We often observe that some students who can read and

write a code involving a single conditional or loop can not
understand the combination of them. This is strange be-
cause the meaning of the codes of such a combination can
be deduced from those of a single conditional and loop. Al-
though some mistakes seem to be just due to each student’s
carelessness, but some students make same mistakes for sim-
ilar questions. The reason of this failure may be that they
understand conditional and loop constructs incompletely.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’13 November 14-17 2013, Koli, Finland
Copyright 2013 ACM 978-1-4503-2482-3/13/11 ...$15.00.
http://dx.doi.org/10.1145/2526968.2526978

def a3(a)

ans = 0

for i in 1..a

ans = ans + a

end

p ans

end

Figure 1: Code a3 used in our quiz

Some misconceptions of simple conditional and loop con-
structs do not appear for the usual problems of conditional
and loop constructs. The misconceptions are carried on to
the next stage, making recovery difficult. Those with such
misconceptions can pass quizzes on simple conditional and
loop constructs, but the deficiency appears when they are
faced with a combination of them.

Recently, a lot of studies on novices’ programming skills
were conducted and among them the tracing skill [5, 6] is
most related to the understanding of conditional and loop
constructs. To detect misconceptions as early as possible,
we developed a set of tracing quizzes.

Meaningful codes have been used in assessing the tracing
skill. For example, “max” and “sum” are often used to ex-
plain the semantics of a loop construct. The semantics of
“max” and “sum” obscure the repeating nature of the con-
struct, and some students understand them just as simple
patterns. Such patterns can not help the students to under-
stand a bit more complex loop. Therefore, we use quizzes
without practical meanings.

Figure 1 shows a sample quiz written in Ruby. The main
body of the loop does not include the control variable i in the
enclosing loop. This is unusual, but those who completely
understand the semantics of the loop construct can answer
that 9 is the output of p ans for a3(3) and 16 for a3(4).
Surprisingly, less than 30% of students could answer both
correctly in one of our novice programming classes.

Those with some misconceptions may answer a quiz while
failing to answer a slightly different quiz. Therefore, we gen-
erated a code as a combination of programming constructs,
and we used a set of these slightly different codes to detect
misconceptions. We call the set tracing quiz.

From students’ answers to the quizzes, we mine common
errors and infer what misconception may lead to the errors.
The plausibility of the inferred misconception can be esti-
mated by the number of errors the misconception can ex-
plain at this point. By using an interactive test system, we

85

can promptly provide feedback on possible misconceptions
a student may have, and also we can ask him why he makes
a mistake.
We applied these methods to five courses. Seven possible

misconceptions were identified that could explain half of the
errors. The collected self-explanations from our interactive
test system confirmed that the inferred misconceptions are
mostly correct.

2. RELATED WORK
Many programming educators have been tackling miscon-

ceptions in novice programmers. For example, Pea identi-
fied parallelism, intentionality, and egocentrism as program-
ming language-independent bugs [10]. Bonar et al. focused
on novice natural language preprogramming knowledge and
novice fragmentary programming knowledge [1]. Our re-
search focuses on misconceptions related to tracing skills in
some programming language in higher education; Language-
dependent misconceptions are not excluded. Problem solv-
ing strategies are not so related. Students are novices in
programming but matured in logical reasoning. Misconcep-
tions identified in these previous works may be used in the
“assume misconception” in our method explained in Section
3. In our limited experiment reported in Section 4, these
misconceptions did not explain the identified common er-
rors.
Recently, studies on novice programmers have been fo-

cused on programming skills [7, 17]. For example, Lopez
analyzed an end-of-semester examination, and found hierar-
chical relationships among programming-related skills such
as reading, tracing, and writing [6]. The tracing quizzes
they used have practical meanings and are not suitable to
our purpose.
Vainio found the following four factors in novice program-

mers’ poor tracing: single value tracing, confusing function
and structure, inability to use external representations, and
inability to raise abstraction level [16]. They conducted a
series of interviews with students who participated in an
intensive course on introductory programming. About one
hour long interviews were carried out while a student had
been taking tracing exams. Their method may reveal im-
portant factors but it is time consuming while our method
is easy to carry out. The four factors they identified did not
manifest in our experiment.
Gobil identified the common errors made by students learn-

ing introductory programming [4]. For example, they found
that most common errors in evaluating arithmetic expres-
sion are failing in evaluating integer division and type con-
version. However, they did not investigate if such novice
programmer’s errors are crucial for their learning program-
ming.
Intelligent Tutoring Systems (ITSs) have been extensively

investigated. As directly related research to tracing skills,
Chou developed ProTracer 2.0 [3], which requests a student
to input each value of variables step by step during program
execution. If the input is incorrect, ProTracer provides hints
to the student. Moreno used “Jeliot3” as a tool to assist in
teaching introductory programming course [8]. Jeliot3 is a
program animation tool oriented towards novice program-
mers, however, its animations was hard for the novice stu-
dents who joined Moreno’s experiments. Sorva’s “UUhistle”
helps novice programmers to understand how given codes
works [14]. For example, novice programmers can verify

changes of variables by putting together programming blocks
on UUhistle. Sirkiä and Sorva explored the logs collected
from UUhistle and identified 26 mistakes [12]. Because a
few novice programmers have good tracing skills without
spending time on it, identifying novice programmers who
have some problems in tracing skills by using our method is
beneficial.

Simulation of a human thinking process has been also ex-
tensively investigated(e.g. [9]), particularly in computer pro-
gramming, MARCEL [15] is a well known system that sim-
ulates a process of constructing a program. However, MAR-
CEL is mainly focused on modeling, and is not a mechanism
that can be applied in a real-world classroom situation. We
do not deeply analyze a student’s entire thinking process,
but concentrate on the code tracing process. We assume
that students understand most programming constructs, but
they fail to trace codes due to misunderstanding certain con-
structs. Therefore, we can provide feedback as long as we
successfully infer their misconceptions.

3. METHOD
Our method involves the following procedure.

write quiz First, we write codes of various combinations of
conditional and loop constructs. Then we write a quiz
asking for the printed or returned values by executing
the codes for some parameters.

conduct test Students answer the tracing quiz through a
paper test or an interactive test system. For the inter-
active test given after a class, it is better to make it
clear to the students that obtaining answering, using
computers or asking others is not rewarding but detri-
mental because the test is not graded but is for giving
early feedback.

common error mining For each quiz or a set of quizzes
using the same code, we find errors common to many
students. For example, because 42% of students an-
swered 3 for a3(3) and 4 for a3(4) for quizzes on a
code in Figure 1, we use this as a common error for
these quizzes of the same code (a3).

assume misconception We find out a misconception which
causes the common errors. This is a discovery process.
The already found misconceptions in [10, 1] may be
used. In our experiment reported in Section 4, we
found out the misconceptions mostly from our obser-
vations and some students’ explicit comments on the
mistakes they made.

simulate misconception To simulate the response of those
who have misconceptions, we write a program to inter-
pret a given code along the misconception.

assess explainability We apply the interpreter program
to all the codes used in the quizzes and see how the
interpreter’s outputs match students’ answers. How
each student’s errors coincide with the errors output by
the interpreter is used to determine whether a student
has a misconception.

automate feedback Once we collected misconceptions and
implemented them in an interactive test system, we
can show the student possible misconceptions he may

86

Table 1: Description of tracing quiz set
Quiz Code Description
1-2 a1 conditional with comparison >

3-4 a2 conditional with comparison ==

5-6 a3 loop using no control variables (see Figures 1 and 3)
7-8 a4 loop using control variables
9-10 a5 conditional with comparison > using no control variables (see Figure 3)
11-12 a6 conditional with comparison == using no control variables
13-14 a7 conditional with comparison > using control variables (see Figure 3)
15-16 a8 conditional with comparison == using control variables
17-18 a9 loop using no control variables in conditional with comparison >

19-20 a10 loop using no control variables in conditional with comparison ==

have immediately after he submits answers to the sys-
tem. This function helps students to remedy their mis-
conceptions as early as possible.

validate misconception By allowing students to enter their
explanations for the presented misconception in the
interactive system, we can collect information invali-
dating the inferred misconceptions suggesting modifi-
cations as well as information validating the miscon-
ceptions. Therefore, we can constantly improve the
system and adapt it to any educational environment.

4. EXPERIMENT

4.1 Tracing Quiz Set
We created 10 Ruby codes by combining conditional and

loop constructs in various ways1. A tracing quiz asks for the
output value for a given input value. We created two tracing
quizzes that vary the input values for each code, resulting
in a total of 20 quizzes. We used them as the tracing quiz
set. Table 1 summarizes these quizzes.

4.2 Data Sets
We administered the tracing quiz set introduced in Sec-

tion 4.1 for five groups of students: G2011S, T2011W,
T2012S,G2012S, andT2012W. The details of these groups
are explained below.

G2011S This group consisted of about 80 students who
took a course on basic programming in Ruby in 2011.
Most were sophomores and majored in math educa-
tion. They were divided into two classes according
to their student IDs, but we used the answers as one
group because the students’ characteristics and the
course materials were the same. They answered ques-
tions in the tracing quiz set after ten scheduled classes.
The quiz scores were not used to grade them. We used
the answers of 71 students who agreed to participate
in the research.

T2011W This group consisted of about 60 students who
took a course on introduction to information science in
2011. They learned basic concepts on information sci-
ence through programming in Ruby. Most were fresh-
men and sophomores. Their majors were in various
fields. The course did not require a student to have

1All codes we used are available at http://www.sekiya.
ecc.u-tokyo.ac.jp/blog/research/codes_for_mtq.
html.

programming experience and most had no program-
ming experience. The quiz scores were not used to
grade them. We used the answers of 47 students who
agreed to participate in the research.

T2012S This group consisted of about 50 students who
took a course on fundamental data models such as
graphs, lists, sets, and trees in 2012. The course re-
quired students to have basic programming skills. That
is, the other groups were novices though those in this
group were not. Most were sophomores and majored
in various fields. The quiz scores were not used to
grade them. We used the answers of 81 students2 who
agreed to participate in the research.

G2012S This group consisted of about 110 students who
took the course on basic programming in Ruby in 2012.
The students’ characteristics and course materials were
the same as those in G2011S. The difference was that
76 students in G2012S took the tracing test with an
interactive testing system and 5 students took it on
paper. We used the answers of 81 students who agreed
to participate in the research.

T2012W This group consisted of about 70 students who
took the course on introduction to information science
in 2012. The students’ characteristics and course ma-
terials were the same as those in T2011W. The stu-
dents took the tracing test with the testing system
used for G2012S. The tracing set used for them was
different from the ones used for the other groups in
that while was used instead of for. For example, the
code in Figure 2 was used for the test instead of that
in Figure 1. We used the answers of the tracing test of
63 students and the final exam scores of 54 students.

5. ANALYSIS

5.1 Misconception
From the answers of the G2011S students, we mined com-

mon errors and inferred seven misconceptions that caused
the errors from our experience. The seven misconceptions
are listed in Table 2. Hereafter, we call an error that can
be explained by a misconception NFL(Neglect For Loop) an

2They answered the tracing quiz set at the first class of this
course. However, some of them gave up taking the course,
therefore the number of participants of the quiz set was big-
ger than the enrollments for the class.

87

Table 2: Description of misconceptions and number of quizzes affected by them
Name of Description Number of

Misconception Quizzes
CVIC Change Variable In Condi-

tion
Interpret variables in the conditional part of conditionals as con-
trol variables.

3

CVIC2 Change Variable In Condi-
tion 2

Interpret variables in the conditional part of conditionals as the
end value of the enclosing loop.

3

CVIL: Change Variable In Loop Interpret variables in conditionals as control variables. 8
CVIL2 Change Variable In Loop 2 Interpret variables in conditionals as the end value of the enclos-

ing loop.
6

CVISL Change Variable In Simple
Loop

Interpret variables in the body of conditionals as control vari-
ables.

4

NFL Neglect(ignore) For Loop Ignore loop when the body has no control variables. 8
RAA Regard As Array Interpret substitution to keep the previous values. 13

def a5(a)
 ans = 0
 for i in 1..a
 if a > 3
 ans = ans + a
 else
 ans = ans - a
 end
 end
 p ans
end

def a5(a)
 ans = 0
 for i in 1 .. a
 if i > 3 then
 ans = ans + a
 else
 ans = ans - a
 end
 end
 p ans
end

def a5(a)
 ans = 0
 for i in 1 .. a
 if i > 3 then
 ans = ans + i
 else
 ans = ans - i
 end
 end
 p ans
end

CVICCVIL

def a3(a)
 ans = 0
 for i in 1..a
 ans = ans + a
 end
 p ans
end

def a3(a)
 ans = 0
 for i in 1 .. a
 ans = ans + i
 end
 p ans
endCVISL

def a3(a)
 ans = []
 for i in 1 .. a
 ans.push(i)
 end
 p ans
end RAA

def a7(a)
 ans = 0
 for i in 1..a
 if i > 3
 ans = ans + i
 else
 ans = ans - i
 end
 end
 p ans
end

def a7(a)
 ans = 0
 for i in 1 .. a
 if a > 3 then
 ans = ans + i
 else
 ans = ans - i
 end
 end
 p ans
end

def a7(a)
 ans = 0
 for i in 1 .. a
 if a > 3 then
 ans = ans + a
 else
 ans = ans - a
 end
 end
 p ans
end

CVIC2CVIL2

def a3(a)
 ans = 0
 ans = ans + a
 p ans
end

NFL

Figure 3: Code conversions reflecting various misconceptions.

NFL error. Note that the same error can be an NFL error
and a CVIL(Change Variable In Loop) error simultaneously
because the same error can be explained by multiple mis-
conceptions.
For simulating a misconception, we converted the original

Ruby code into another Ruby code reflecting the misconcep-
tion. For example, with the NFL misconception, the code in

Figure 1 is interpreted as that of Figure 4. Other examples
are shown in Figure 3.

A student with the NFL error can answer a quiz correctly
if the quiz does not involve a loop construct. The “Number
of Quizzes” column in Table 2 shows the number of quizzes
affected by the misconception in the same row.

88

Table 3: Percentage of answers that match misconceptions. Percentages of total answers and incorrect
answers for each group.

Misconceptions G2011S G2012S T2011W T2012W T2012S
CVIC 0.1 0.2 0.2 0.4 0.2 1.2 0.7 6.2 0.6 7.8
CVIC2 4.4 10.7 3.5 7.9 1.4 7.8 1.4 12.4 1.4 17.1
CVIL 6.9 17.0 6.8 15.5 3.9 22.3 0.6 5.5 2.2 27.1
CVIL2 0.8 2.1 0.1 0.3 0.1 0.6 0.7 6.2 0.0 0.0
CVISL 3.7 9.0 3.4 7.7 1.7 9.6 0.3 2.8 1.9 23.3
NFL 15.4 37.7 15.3 34.9 8.3 47.0 1.5 13.1 0.9 10.9
RAA 1.0 2.4 1.0 2.3 0.0 0.0 0.0 0.0 0.3 3.9
Matched Some 26.2 64.4 24.6 56.1 12.7 71.7 4.8 42.1 5.2 65.1
Matched None 14.5 35.6 19.3 43.9 5.0 28.3 6.7 57.9 2.8 34.9
Error 40.7 100.0 43.9 100.0 17.7 100.0 11.5 100.0 8.0 100.0
No Answer 3.4 — 1.7 — 0.6 — 9.4 — 4.3 —
Correct Answer 55.9 — 54.4 — 81.7 — 79.0 — 87.7 —

def a3(a)

ans = 0

i = 1

while i <= a do

ans = ans + a

i = i + 1

end

p ans

end

Figure 2: Code a3 used in test for T2012W

5.2 Explainability
Table 3 shows how each misconception explains the re-

sult of the tracing test. For G2011S, 64.4% of the errors
could be explained by the misconceptions listed in Table 2.
For all groups, NFL errors dominated other errors. CVIL,
CVIC2(Change Variable In Condition2), and CVISL(Change
Variable In Simple Loop) incorrectly treat variables in con-
ditionals enclosed by a loop. This group of misconceptions
explains 39% of the errors.
Even though the number of errors was smaller for T2011W,

71.7% of the errors could be explained by the misconceptions
in Table 2. NFL errors were 47% of the errors. The group
of misconceptions in variables in conditionals enclosed by a
loop explains 41.5% of the errors. For the all student groups
except T2012W, more than half of errors can be explained
by any of misconceptions listed in Table 2.
Next, we investigated how consistently students had mis-

conceptions. Table 4 lists the number of students based the
number of NFL errors. The tracing quiz set contains eight
NFL errors, as shown in Table 2. The number of students
is distributed with two peaks at each end and the minimum
at its center, “4”. For G2012S, the number of students is
also distributed with two peaks at each end, but the mini-
mum at “2”. For both G2011S and G2012S, the differences

def a3(a)

ans = 0

ans = ans + a

p ans

end

Figure 4: Code reflecting NFL misconception for
code in Figure 1.

among the number of students who answers “2”–“4”NFL er-
rors are small (1–3). Therefore, we consider students with
more than or equal to half of the NFL errors have the mis-
conception and the other students have no misconception.
A student considered to have an NFL misconception in this
rule is called an NFL student, and one considered to have no
NFL misconception is called a non-NFL student. For other
misconceptions and other student groups, the distributions
of number of students are different from each other. There-
fore in this paper we adapt half of the maximum errors as
the cut-off point as same as NFL.

Table 5 lists the number of students having each miscon-
ception. For G2011S, we found that 66.2% of students had
misconceptions. Some of the T2012W students did not an-
swer a part of quizzes (See the “No Answer” in Table 3),
therefore the percentage in total students for T2012 was less
than those for the other groups. Because the error rate of
the T2012S students was only 12.3% (= 100− 87.7. See Ta-
ble 3), the remaining error is governed more by randomness,
making it less consistently explained by misconceptions.

5.3 Stability and Sensitivity
Figure 5 shows the percentages of correct answers per quiz

for all groups. The groups G2011S and G2012S were quite
similar. These two groups had the same characteristics and
were taught with the same course materials. This shows the
stability of the tracing quiz set; similar students with similar
course materials produced similar results.

Table 4: Number of students and percentage in to-
tal students according to number of NFL errors for
G2011S and G2012S

G2011S G2012S
Matched # of # of

Errors students (%) students (%)
0 31 43.7 35 43.2
1 4 5.6 7 8.6
2 4 5.6 2 2.5
3 3 4.2 3 3.7
4 1 1.4 3 3.7
5 4 5.6 4 4.9
6 8 11.3 8 9.9
7 3 4.2 4 4.9
8 13 18.3 15 18.5

89

Table 5: Student misconceptions. Number of students and percentage in total students for each group.
Name of G2011S G2012S T2011W T2012W T2012S
Misconceptions
CVIC 0 0.0 0 0.0 0 0.0 4 6.3 3 3.7
CVIC2 22 31.0 17 12.0 4 8.5 5 7.9 6 7.4
CVIL 7 9.9 9 11.1 2 4.3 0 0.0 0 0.0
CVIL2 1 1.4 0 0.0 0 0.0 1 1.6 0 0.0
CVISL 17 23.9 16 19.8 5 10.6 1 1.6 10 12.3
NFL 29 40.8 34 42.0 10 21.3 2 3.2 1 1.2
RAA 0 0.0 1 1.2 0 0.0 0 0.0 0 0.0
Matched Some 47 66.2 52 64.2 16 34.0 13 20.6 19 23.5
Total 71 — 81 — 47 — 63 — 81 —

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

G2011S G2012S T2011W T2012W T2012S

Figure 5: Percentages of correct answers per quiz. Quizzes 1–4 included only conditionals, quizzes 5–8
included only loops, quizzes 9–16 used conditionals in loops, and quizzes 17–20 used loops in conditionals.

The groups T2011W and T2012W were similar to G2011S
and G2012S with respect to quizzes 1–4, 7–8, 17, and 19, but
were better than G2011S and G2012S with respect to other
quizzes. This is because T2011W and T2012W were differ-
ent from G2011S and G2012S in student’ characteristics and
course materials.
The group T2012W performed better than T2011W in

quizzes 5, 6, 9, and 10. This can be explained by the differ-
ence between while and for used in the quizzes for T2012W
and T2011W, respectively. We found that some students ig-
nore a loop when no control variables appear in the loop
body like the code shown in Figure 1. In the while loop like
quiz 5 for T2012W (See Figure 2), a control variable always
appears in the loop body and this may prevent students
from erroneously ignoring the loop. On the other hand, the
group T2012W performed worse than T2011W in quiz 7 and
8. This may be explained by the fact that the code a4 used
for T2011W (See Figure 6) contains a control variable in the
loop body and may prevent T2011W students from ignoring
the loop. Besides, Table 3 shows that number of NFL errors
for T2012W is smaller that the number for T2011W despite
the fact that there is no big difference between the “Correct
Answer”-s for T2011W and T2012W. The reasons of the
differences between T2011W and T2012W stated here are
preliminary ones and further research similar to Soloway’s
[13] is needed to validate them.

T2012S performed better than the other four because the
students were not novices. This shows the sensitivity of
the tracing quiz set; different students with different course
materials produced different results.

5.4 Validity
To confirm that the inferred misconceptions are those the

students had, we administered a paper-based questionnaire
for T2012S. We returned marked sheets of their answers to
students and asked them to describe how they answered the
quizzes. For G2012S and T2012W, we used a web-based, in-
teractive test system, as shown in Figure 7. After students
submitted answers, the system showed the correct answers

def a4(a)

ans = 0

for i in 1..a

ans = ans + i

end

p ans

end

def b4(a)

ans = 0

i = 1

while i <= a do

ans = ans + i

i = i + 1

end

p ans

end

Figure 6: Code a4 for all groups except T2012W
and Code b4 for T2012W used in quizzes 7–8

90

Table 6: Relationships between misconceptions and final exam scores for G2011S and G2012S. Number of
students and percentage in total students for each group. The students of G2011S and G2012S are respectively
divided into four groups, A(good score)–D(poor score), according to the quartiles of their final exam scores.

G2011S G2012S
A B C D A B C D

CVIC 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
CVIC2 3 4.3 5 7.1 5 7.1 9 12.9 2 2.8 3 4.2 5 7.0 6 8.5
CVIL 2 2.9 2 2.9 1 1.4 2 2.9 2 2.8 3 4.2 1 1.4 2 2.8
CVIL2 0 0.0 1 1.4 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
CVISL 4 5.7 4 5.7 3 4.3 5 7.1 3 4.2 4 5.6 4 5.6 3 4.2
NFL 1 1.4 7 10.0 11 15.7 10 14.3 2 2.8 6 8.5 11 15.5 9 12.7
RAA 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 1 1.4

Table 7: Explanations from T2012S, G2012S, and T2012W (original comments were written in Japanese)
Misconception Comments

CVIC “I mistook a for i at line 4.” (T2012S)
CVIC2 “I mistook i in the line if i > 3 for a, thought ans=ans+i would be executed when

a=4.” (T2012S)
CVIL/CVISL “I mistook a in ans=ans+a for i, so calculated 1+2+3+4 = 10, but it was 4+4+4+4 =

16.” (T2012S) “I thought it was 1 + 2 + 3.” (G2012S)
NFL “I thought the answer was 3 because ans+a has no relation with i.” (G2012S)“I forgot

a symbol used for repeating.” (T2012W)

and requested them to describe how they reached their an-
swers. The system finally showed the inferred misconcep-
tions if the students submitted the descriptions about their
own answers. Although the system does not have any mech-
anism to request students to answer about the misconcep-
tions, a few students gave us comments that the misconcep-
tions might be helpful to understand the codes used in the
tracing quiz.
Table 7 lists the comments from T2012S and G2012S stu-

dents along with the misconception that explains the error.
For example, a student in G2012S answered 3 to a3(3) for
the code in Figure 1 and commented on the error that “I
thought the answer was 3 because ans+a has no relation
with i.” This comment agrees with the description of NFL.

5.5 Effect
We analyzed the relationships between students’ miscon-

ceptions and their end-of-semester examination scores to de-
termine the effect of the misconceptions on the overall per-
formance of the students. We divided each of G2011S and
G2012S into four groups, A(good score)–D(poor score), ac-
cording to the quartiles of their end-of-semester exam scores.
The numbers of students in groups A, B, C, and D were 19,
17, 18, and 16 for G2011S, and 16, 19, 18, and 18 for G2012S
respectively.
Table 6 lists the number of students according to miscon-

ceptions and groups (A–D). From this table, CVIC2 and
NFL students had a tendency to obtain lower scores while
CVIL and CVISL students had no such tendency for the
both G2011S and G2012S.
To reexamine if CVIC2 and NFL students obtain poor

scores, we divided the students into NFL/Non-NFL and
CVIC2/Non-CVIC2 students following the rule explained
in Section 5.2. For G2011S, the t-test on the differences
between the averages of NFL/Non-NFL and CVIC2/Non-
CVIC2 showed that the differences were significant with p-
values (NFL/Non-NFL: p = 0.001136 < 0.05 and CVIC2/Non-

CVIC2: p = 0.04792 < 0.05). For G2011S, the result of the
same t-test did not show that the differences were signifi-
cant (NFL/Non-NFL: p = 0.05076 > 0.05 and CVIC2/Non-
CVIC2: p = 0.209 > 0.05), but NFL students had a ten-
dency to obtain poorer scores than Non-NFL students. Ta-
ble 8 lists the minimum, average, maximum, and standard
deviation of the scores of these groups.

We also compared T2011W and T2012W students’ mis-
conceptions and their end-of-semester examination scores.
Table 9 lists the numbers of students according to mis-
conceptions and groups (A–D). In T2011W and T2012W,
the numbers of students having misconceptions were much
smaller than those in G2011S and G2012S; therefore, we
could obtain statistically significant results. However NFL
and CVIC2 students had a tendency to obtain similar poor
scores to those in G2011S and G2012S.

These results show that NFL students’ performance was
significantly lower than others. In Ruby, a block that starts
from while/for and ends at end is the basic control struc-
ture. NFL students do not completely understand even this
basic control structure. Thie misunderstanding may effect
not only tracing skill of programming but also other skills
related to programming. Therefore such students may not
be able to obtain good exam scores.

6. CONCLUSION
We proposed our tracing quiz set. From experiments with

five groups of programming students, we found seven mis-
conceptions that explain the significant portion of errors stu-
dents make. In our research NFL was the most important
misconception. Students with the NFL misconception per-
formed significantly poorer; therefore early detection of the
misconception may be helpful.

The tracing quiz set is easy to conduct and takes less than
30 min. It can be administered on paper or interactively.
An interactive test system, like the one we have developed
enables a student to get a prompt suggestion of his mis-

91

Question ID Ruby code Question Your answer Correct answer
Reason for

your answer

Figure 7: Snapshot of our web-based interactive test system

Table 8: Final exam score statistics of NFL, non-NFL, CVIC2, and non-CVIC2 students
G2011S G2012S

students Min. Ave. Max. Std. students Min. Ave. Max. Std.
NFL 29 70.0 132.8 190.0 29.3 28 40.0 127.2 200.0 42.9
Non-NFL 41 50.0 160.5 200.0 38.9 43 10.0 149.1 200.0 48.6
CVIC2 22 70.0 135.9 190.0 35.2 16 40.0 127.7 200.0 44.4
Non-CVIC2 48 50.0 155.0 200.0 37.5 55 10.0 144.2 200.0 48.0

Table 9: Relationships between misconceptions and final exam scores for T2011W and T2012W. Number of
students and percentage in total students for each score group. The students of T2011W and T2012W are
respectively divided into four groups, A(good score)–D(poor score), according to the quartiles of their final
exam scores.

T2011W T2012W
A B C D A B C D

CVIC 0 0.0 0 0.0 0 0.0 0 0.0 2 3.7 1 1.9 1 1.9 0 0.0
CVIC2 0 0.0 1 2.4 2 4.9 0 0.0 0 0.0 0 0.0 4 7.4 1 1.9
CVIL 0 0.0 1 2.4 0 0.0 1 2.4 0 0.0 0 0.0 0 0.0 0 0.0
CVIL2 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
CVISL 0 0.0 2 4.9 1 2.4 2 4.9 1 1.9 0 0.0 0 0.0 0 0.0
NFL 0 0.0 0 0.0 5 12.2 3 7.3 0 0.0 0 0.0 0 0.0 1 1.9
RAA 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0

conceptions for his submission of answers. Even though the
suggested misconceptions may not be his actual misconcep-
tions, the comments he may write can be used to improve
the collection of misconceptions.
Another advantage of the tracing quiz set is that its codes

are defined as functions, and each quiz is just a specific in-

stance of invocation. Therefore, students can not answer
quizzes by just remembering the answers of the previous
quizzes. This means that we can safely reuse and/or share
codes that are the essential parts of the quizzes. For future
research, we plan to analyze other type of programming con-
cepts by developing new tracing quizzes, and to administer

92

the same tracing quiz used in this paper. To examine the
answers of students, in addition to our misconceptions, some
misconceptions which are already reported by other studies
(e.g [11, 2, 12]) seem available.

Acknowledgements
This work was supported by JSPS Grant-in-Aid for Chal-
lenging Exploratory Research Number 133800000012.

7. REFERENCES
[1] J. Bonar and E. Soloway. Preprogramming knowledge:

A major source of misconceptions in novice
programmers. Human-Computer Interaction,
1(2):133–161, June 1985.

[2] B. D. Boulay. Some difficulties of learning to program.
Journal of Educational Computing Research,
2(1):57–73, 1986.

[3] C.-Y. Chou, B.-H. Huang, and C.-J. Lin.
Complementary machine intelligence and human
intelligence in virtual teaching assistant for tutoring
program tracing. Computers & Education,
57(4):2303–2312, 2011.

[4] A. Gobil, Z. Shukor, and I. Mohtar. Novice difficulties
in selection structure. In Electrical Engineering and
Informatics, 2009. ICEEI ’09. International
Conference on, volume 02, pages 351 –356, Aug. 2009.

[5] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone,
J. Hamer, M. Lindholm, R. McCartney, J. E.
Moström, K. Sanders, O. Seppälä, B. Simon, and
L. Thomas. A multi-national study of reading and
tracing skills in novice programmers. In Working group
reports from ITiCSE on Innovation and technology in
computer science education, ITiCSE-WGR ’04, pages
119–150, New York, NY, USA, 2004. ACM.

[6] M. Lopez, J. Whalley, P. Robbins, and R. Lister.
Relationships between reading, tracing and writing
skills in introductory programming. In Proceeding of
the Fourth international Workshop on Computing
Education Research, ICER ’08, pages 101–112, New
York, NY, USA, 2008. ACM.

[7] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,
D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas,
I. Utting, and T. Wilusz. A multi-national,
multi-institutional study of assessment of
programming skills of first-year cs students. In
Working group reports from ITiCSE on Innovation
and technology in computer science education,
ITiCSE-WGR ’01, pages 125–180, New York, NY,
USA, 2001. ACM.

[8] A. Moreno and M. S. Joy. Jeliot 3 in a demanding
educational setting. Electron. Notes Theor. Comput.
Sci., 178:51–59, July 2007.

[9] A. Newell and H. A. Simon. Computer simulation of
human thinking. Rand Corporation, 1961.

[10] R. D. Pea. Language-independent conceptual “bugs” in
novice programming. Journal of Educational
Computing Research, 2(1):25–36, 1986.

[11] R. T. Putnam, D. Sleeman, J. A. Baxter, and L. K.
Kuspa. A summary of misconceptions of high school
basic programmers. Journal of Educational Computing
Research, 2(4):459–472, 1986.

[12] T. Sirkiä and J. Sorva. Exploring programming
misconceptions: an analysis of student mistakes in
visual program simulation exercises. In Proceedings of
the 12th Koli Calling International Conference on
Computing Education Research, pages 19–28. ACM,
2012.

[13] E. Soloway, J. Bonar, and K. Ehrlich. Cognitive
strategies and looping constructs: An empirical study.
Communications of the ACM, 26(11):853–860, 1983.

[14] J. Sorva and T. Sirkiä. UUhistle: a software tool for
visual program simulation. In Proceedings of the 10th
Koli Calling International Conference on Computing
Education Research, Koli Calling ’10, pages 49–54,
New York, NY, USA, 2010. ACM.

[15] J. C. Spohrer and E. Soloway. Simulating student
programmers. In Proceedings of the 11th International
Joint Conference on Artificial Intellegence, volume 1
of IJCAI’89, pages 543–549. Morgan Kaufmann
Publishers Inc., 1989.

[16] V. Vainio and J. Sajaniemi. Factors in novice
programmers’ poor tracing skills. SIGCSE Bull.,
39(3):236–240, June 2007.

[17] A. Venables, G. Tan, and R. Lister. A closer look at
tracing, explaining and code writing skills in the
novice programmer. In Proceedings of the fifth
international workshop on Computing education
research workshop, ICER ’09, pages 117–128, New
York, NY, USA, 2009. ACM.

93

An Easy Approach to Epistemology and Ontology
in Computing Theses

Matti Tedre
Stockholm University

Department of Computer and Systems Sciences
Kista, Sweden

firstname.lastname@acm.org

John Pajunen
University of Jyväskylä

Department of Social Sciences and Philosophy
Jyväskylä, Finland

firstname.lastname@jyu.fi

ABSTRACT
In many research fields—notably social sciences but also
in those fields where design, experiment-based science, and
social sciences are mixed—researchers must often describe
their epistemological and ontological commitments in re-
search reports. The research literature describes those com-
mitments in various ways, often grouped under research par-
adigms such as positivism, post-positivism, and construc-
tivism, and described as “world views.” This paper presents
the bare bones of the ontological and epistemological ques-
tions in scientific practice. Ontologically speaking, subject
matters can be mind-dependent or mind-independent. Epis-
temologically speaking, elements of research may be more or
less open to interpretation. This paper introduces a simpli-
fied approach to standard research terminology for comput-
ing and engineering students by offering a rough-and-ready
way for resolving ontological and epistemological questions.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—computer science education

General Terms
Theory

Keywords
Thesis work, computing education, computer science educa-
tion, philosophy, epistemology, ontology, research paradigms

1. INTRODUCTION
Computing combines a number of very different subjects

under the same disciplinary umbrella (e.g., [4]). A look at
the six research areas of computing [5] reveals a broad vari-
ety of subjects of study. In electrical and electronic engineer-
ing we study things like semiconductors and electromagnetic
radiation. In computer engineering we study things like mi-
croprocessors and sensors. In computer science we study

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
Koli Calling ’13, November 14–17 2013, Koli, Finland
ACM 978-1-4503-2482-3/13/11.
http://dx.doi.org/10.1145/2526968.2526979

things like algorithms and computability theory. In software
engineering, we study things like software development pro-
cesses and formal methods. In information technology we
study things like network design and lifecycle analysis. And
in information systems we study things like organizational
processes and decision support systems. Many computing
fields, such as human-computer interaction and artificial in-
telligence, span across several computing fields and also in-
tertwine with fields other than computing.

The variety of research topics in computing makes it nigh
impossible to formulate an overarching prescription on how
computing research should properly be done [24, 25]. Re-
searchers in each computing subfield prefer a different set
of methods. Analytical methods dominate in the theoreti-
cal fields, varieties of the scientific method are common in
the quantitatively oriented empirical fields, methods from
social sciences and the humanities dominate in the quali-
tatively oriented empirical fields, and engineering methods
are often found in the design-oriented fields [23, 24]. It is
uncommon to find pure engineering, pure science, or pure
theory in computing disciplines, and some may consider it
undesirable, too [12].

In computing literature, ontological and epistemological
questions have received their most covering treatment in
the field of information systems (e.g., [11, 16]). The lack of
field-specific philosophical foundations is often not much of a
concern, but as methodological literature often discusses re-
search philosophy too, it is hard to completely ignore them.
Most importantly, many students face, at some point of their
thesis work, two grand words in the research literature: epis-
temology and ontology.

Research textbooks typically introduce the epistemologi-
cal question as “What is the nature of the relationship be-
tween the knower . . . and what can be known?” [8, p.108]
and the ontological question as“What is the form and nature
of reality and, therefore, what is there that can be known
about it?” [8, p.108]. Methodology literature presents a va-
riety of answers to these two questions, ranging from clear
and simplified to abstract and vague. Guba and Lincoln
[8, p.107] wrote that a research paradigm, which entails on-
tological, epistemological, and methodological assumptions,
represents a “world view” that defines the researcher’s view
of the nature of the world, the individual’s place in it, and
the range of possible relationships to that world and its
parts. On a more basic level, what the ontological and
epistemological questions do in a research report is spec-
ify some basic facts about one’s subject of study. Those
questions, when properly formulated, can help students with

94

their framing of research, their method choice, and their re-
search questions.

The classic definitions and treatments of research para-
digms, as accurate and deep as they may be, are not always
very useful for students in computing fields. Consider, for
example, a student who does a quantitative study on users’
perceptions on usability of a new tool. Should that student
adopt the positivist viewpoint which entails näıve realist on-
tology and objectivist epistemology; or should that student
adopt the constructivist viewpoint which entails relativist
ontology and subjectivist epistemology [8]? Too many new
and difficult concepts may unnecessarily complicate a discus-
sion that is aimed at clarifying the thesis. The research par-
adigms are rooted in a number of fundamental ontological,
epistemological, and methodological positions, and choosing
between them requires quite a lot of knowledge of philoso-
phy. It would be hard to argue that in-depth knowledge of
such debates would or should play a very important role in
computing students’ training.

Yet, it is still important to recognize assumptions about
one’s research. Clarity about ontological, epistemological,
and methodological stands in a research study is especially
important in a field that has to maneuver between and across
disciplines that deal with essentially different kinds of things.
In computing, the same research study may involve math-
ematical and formal objects, artifacts made by people, and
social or other kinds of conventions. This paper is primarily
aimed at educators in the field of computing, and it proposes
a practical, hopefully student-friendly approach to talking
about ontology, epistemology, and methodology in comput-
ing disciplines. This article is intended to be short and
to-the-point; there are only four crucial concepts: mind-
dependence and independence, epistemological objectivity,
and epistemological subjectivity. Those interested in deeper
discussions on the topic will easily find plenty of good read-
ing on the philosophy of science.

2. ONTOLOGY
Ontology is concerned with the most fundamental level of

the world: what are the ultimate constituents of the world,
“how” do those constituents exist, and what kinds of re-
lations are there between those constituents. Some clas-
sical questions about ontology have occupied philosophers
for ages. One set of such questions includes questions on
substances: what are they like, and how many kinds of sub-
stances are there. Philosophers have proposed numerous
answers to such questions, and some of those answers seem
downright counterintuitive. A full appreciation of all possi-
ble positions would take us too far away from practical work,
and we discuss only positions that we take to be relevant to
the field, but we mention points of potential disagreement.
We attempt to approach these difficult issues from an intu-
itive, common-sense point of view.

One of the major disputes in philosophy is concerned with
existence of things, and their mode of existence. Existence of
material things (such as processors and copper wires) seems
unproblematic to common sense. Similar, for computer sci-
entist the existence of things that we manipulate daily (such
as electromagnetic radiation and electrons) often seems un-
problematic. How mental things (such as wishes, emotions,
thoughts, and feelings) exist might be slightly more prob-
lematic. And how social things (such as laws, conventions,
first names, ideas, ideologies, and theoretical entities) exist

Table 1: Examples of mind-dependent and mind-
independent things in computing disciplines

Mind-dependent Mind-independent
Preferences, attitudes,
programming languages,
values, worth, standards,
processes, procedures,
models

Electromagnetic radia-
tion, material properties,
semiconductors, thermal
noise

may be the least certain to common sense. Some philoso-
phers argue that all the examples above exist only in people’s
minds, but that point of view, one kind of anti-realism, is
rare. For the common sense, a realist position is often taken
for granted when it comes to material things, but mental
and social spheres can lead to problems.

The realist standpoint typically says that on the one hand,
there are things and forces in the world that exist regard-
less of our thoughts and feelings—things such as silicon,
electrons, copper, and electromagnetic radiation. We may
not know everything about those things, but they never-
theless exist independently of us. Their existence is mind-
independent : They would continue to exist even if there were
no humans left on the planet. One must be careful to dis-
tinguish a term, say “copper” (which is a name we give to
a thing), and the things that the term refers to (the actual
thing, such as pieces of copper). Terms are mind-dependent
but they may refer to mind-independent things.

On the other hand, there are things whose existence de-
pends on people’s states of mind, thoughts, or feelings about
those things; take, for instance, first names, users’ prefer-
ences, computer brands, organizational cultures, syntaxes,
and agreements. The existence of those things is mind-
dependent. They exist by virtue of people individually or
collectively making them exist. Those things are created,
maintained, and discarded by individual cognition or by col-
lective agreements, and they cease to exist if there is no-one
left to maintain them. Table 1 presents examples of mind-
dependent and mind-independent objects. In Table 1 on the
right hand side there are things whose existence is not at all
relative to what people think about them, and on the left
hand side there are things whose existence depends on us
making them exist. It is along this dimension of ontology
where people in a technical field usually face the ontological
question. The reason is that many interdisciplinary fields,
such as computing, deal with physical, mental, and social
aspects—sometimes even within a single project.

In general there is a good understanding of the mind-inde-
pendent mechanisms underlying physical systems (especially
systems relevant to computing, such as electrical circuits),
but the situation is not so good with minds and societies.
In many sciences of the mind and societies, there is less un-
derstanding of how things work and why—and sometimes
even no vision of how such consensus could even look like.
Mind-dependent and -independent things are also studied
differently: while mind-independent phenomena do not on
the macro level care much about instruments used for study-
ing them, mind-dependent phenomena may be irreversibly
changed by the act of studying them. For instance, putting a
person in usability lab probably affects that person’s behav-
ior. Similar, doing the same experiment on semiconductors

95

in the 1970s and in the 2010s should yield the same results,
but one does not even expect interview results to be the
same between the 1970s and the 2010s.

When dealing with complex objects a situation may arise
where one aspect of the object may belong to the sphere of
mind-independent things and another to the sphere of mind-
dependent things. In such a case we may say that the ob-
ject of study is mind-involving. A relevant question then is:
what kind of involvement is it? Artifacts are trivially mind-
involving, because the very meaning of term artifact includes
a mind (an artifact is made by humans and it has uses and
functions that are mind-dependent). But artifacts have also
physical properties that are mind-independent, and even
though people have made them, their continuing existence
does not depend on human minds. Artifacts have properties
that are non-trivially mind-involving or not-mind-involving.

Ontology: Why?
Distinction between mind-independent things and mind-de-
pendent things is important because there are remarkable
differences between their properties. Consider, for instance,
how persistent those properties are. Mind-dependent things,
such as values, standards, opinions, and preferences may
change radically over time, whereas many properties of mind-
independent things are relatively stable: how semiconduc-
tors behave does not change over time. For example, a com-
puter system for commercial purposes may have been effec-
tive in the 1960s economy and user base, but ceased to be so
in the 2010s; even though the mind-independent parts (the
computer system) have not changed, the mind-dependent
parts (users and the economy) have changed.

Sciences, including many social sciences and humanities,
are not directly concerned with ontological questions, yet
every research study involves, implicitly or explicitly, onto-
logical assumptions. In empirical research studies, ontology
describes the most general background assumptions of the
study: what sorts of things is the researcher dealing with.
In natural sciences ontological issues are often not treated
in university curricula or discussed in research papers, as
there often is no controversy about those issues and many
would consider them to be a waste of time [13]. Especially
in natural sciences [13] it is a common view that there is no
need to delve into philosophical discussions, as they would
only slow down research. However, the situation is different
in social sciences and humanities, where there is much less
consensus about many fundamental philosophical issues.

Similar to many natural sciences, ontological issues are
not explicitly treated in computing curricula and it is rare
to see them discussed in research papers in computing. But
only some parts of computing are similar to natural sci-
ences. Much of computing research is directly concerned
with mind-dependent things, which situates it closer to so-
cial sciences than natural sciences. In some clearly human-
oriented branches of computing, especially information sys-
tems, ontological descriptions are more common than in
branches that are associated more closely with formal or nat-
ural sciences. Yet, in all research ontological commitments
have more or less direct ramifications on the epistemological
and methodological aspects of the study. Especially in cross-
disciplinary collaboration, computing researchers should be
able to state their general ontological position in clear terms.

Ontology: How?
A crude but effective way of thinking about ontology in com-
puting research is to ask whether the existence of the subject
of study has anything to do with people’s mental states—
thoughts, feelings, anxieties, and so forth. Examples of sub-
jects of study that have nothing to do with people’s mental
states are plenty in electrical engineering, computer engi-
neering, and information technology. If a study is about
things like wireless network signals or semiconductors, the
study is concerned with things that are mind-independent.
Neither the existence nor the properties of those things de-
pend on what anyone thinks about those things.

Alternatively, if a research subject exists by virtue of peo-
ple’s feelings, agreements, thoughts, or other mental states,
the study is concerned with things that are mind-dependent.
Examples of such topics can easily be found in the fields of
information systems, computer science, and software engi-
neering. If a study is about, say, IEEE standards, OSI lay-
ers, programming languages, or users’ preferences, it studies
things that are mind-dependent. Those things exist because
humans individually or collectively make them exist, they
may be changed in the course of time, and they cease to
exist if there is no-one left to hold them. Often research
projects do not, however, concern objects as much as fea-
tures or properties of objects—and those too can be mind-
dependent or -independent.

It is important to note that mind-independent subjects of
study, take a computer mouse, for example, can have both
mind-dependent and -independent properties [19]. Firstly,
the existence of a specific mouse does not depend on our
feelings about it. Secondly, there are several features of that
mouse that are mind-independent: for instance, that it has
a certain mass, form, location, and chemical and physical
composition. Thirdly, many other features of the mouse are
mind-dependent: for instance, that we call it a mouse, that
it is meant for controlling a computer, that this is Mary’s
mouse, and that Mary’s mouse is a particularly good mouse.

Resolving the Ontological Status of a Subject of
Study
Figure 1 presents two simple questions for resolving the on-
tological status of one’s research subject. The first question
resolves whether the subject of study is mind-dependent or
-independent. In the case of mind-independent subjects,
many studies still focus on their mind-dependent features,
functions, or properties. Hence, the second question finds
out whether the features studied are observer relative (mind-
dependent) or intrinsic (mind-independent). That distinc-
tion is—much of the time—enough to frame ontology for a
study.

Ontological status of research subject says nothing about
how difficult is the science involved; it only denotes the sub-
ject’s mode of existence. Research on both kinds of subjects
can reveal interesting and important facts about the world,
but those facts are of different types. Those facts that con-
cern mind-independent aspects of the world have been called
brute facts, and those facts that concern mind-dependent as-
pects of the world have been called institutional facts [19].
For example, it is a brute fact that transistors switching in
processors cause heat. They cause heat no matter what we
think about semiconductors, processors, current, and resis-
tance. There again, it is an institutional fact that 8 bits

96

Ye
s No

Ye
s No

Do the subjects / research outputs
exist regardless of people's mental

states?

The subjects / outputs are about
mind-independent objects

The subjects / outputs are about
mind-dependent objects

Is the research study concerned with
features or properties that are

independent of people's mental states?

The features being studied are
mind-independent.

The features being studied are
mind-dependent.

Figure 1: Resolving the ontological status of elements of study.

make a byte: That fact is created and collectively main-
tained by people, and it is a fact due to people’s collective
agreement.

3. EPISTEMOLOGY
Epistemology refers to the theory of knowledge and is

concerned with, for example, what knowledge is and how
one may gain knowledge. Historically speaking, two major
schools of epistemology have been empiricism, which empha-
sizes perception (such as research based on empirical data
collection), and rationalism, which emphasizes reason (such
as any logical or mathematical reasoning). The old philo-
sophical dispute between empiricism and rationalism is often
not a concern for computing students, although ignoring the
fundamental differences between the two modes of knowl-
edge creation risks some critical misunderstandings.

All scientific disciplines have some traditions and conven-
tions concerning credible ways of acquiring and justifying
knowledge claims. But computing is a diverse discipline,
and spans from highly abstract topics, such as computability
theory, to quite practical topics, such as information technol-
ogy. Hence, understanding epistemological issues plays an
important role in clarifying research studies in computing,
too.

Epistemology: Why?
There are various kinds of reasoning in different branches
of science. Different kinds of reasoning and different kinds
of information all have their own limitations and pitfalls.
For instance, mathematical and formal models are precise
and unambiguous, yet they are confined to the world of ab-
stractions and they fail to capture the unbounded richness
of the physical and social world. Narratives and ethnogra-
phies are rich in dimensions and sensitive to detail, yet they
are equivocal and context-dependent. Scientific experiments
enable accurate prediction and statistical description, but
cannot capture things like meaning and significance. Nar-
ratives have little predictive power, and formal proofs have
little explanatory power regarding things like usability pref-
erences and much of the human experience in general. There

again, the predictive power of mathematical and computa-
tional formulations is uncanny: Computational models have
a miraculous, “unreasonably effective” capability of accu-
rately predicting things in seemingly unrelated domains [9].
Confusing the limits of different intellectual traditions un-
dermines the credibility of a research study, and credibility
in part involves the recognition of known pitfalls and prob-
lems related to each source of knowledge.

Although scientific experiments and empirical research are
able to produce new knowledge about the world, they both
entail various epistemological issues. For example, percep-
tion is limited as a source of knowledge, and it is not always
trustworthy: dip a straight stick in water, and it looks like
it is bent. Measurement tools may offer a very limited pic-
ture of the phenomenon they measure. Existing theories,
experiences, memory, and presuppositions affect how people
interpret what they perceive. However, not only empirical
work, but also theoretical reasoning entails problematic is-
sues ranging from affirming the consequent, to hasty gener-
alizations, to equivocation, and beyond. Even introspection
(examining one’s own mental states) is fallible—memories
fade, change, and some ‘memories’ never happened. In any
research study that involves things like observational, reflec-
tive, or reflexive practices, one needs to be cognizant of the
epistemological issues involved, so that one can take into ac-
count the possible errors and try to work out the research
design to accommodate biases, misrepresentations, misun-
derstanding, and other kinds of problems.

On the most basic level, many research studies follow a
question–answer structure, where the answer makes a claim
or a statement about how things are. One of the cen-
tral meanings of epistemology refers to the objectivity or
subjectivity of judgments or statements [19]. Whereas in
the ontology above things are either mind-dependent or -
independent, in epistemology objectivity or subjectivity is a
matter of degree: judgments can be between subjective and
objective [19]. In everyday language, objective judgments
are those that are independent of single people’s attitudes
towards them; often those shared judgments are called in-
tersubjective. Respectively, subjective judgments are those

97

High
Low

For each step of the study:
To what degree are the judgments at

this step specific to individuals?

Epistemologically
objective

Epistemologically
subjective

Figure 2: Evaluating the epistemological status of
elements of study.

that depend on people’s attitudes or feelings. Objective
judgments are often called facts or knowledge, whereas sub-
jective judgments are often called opinions, preferences, or
beliefs.

Research studies on both mind-dependent and mind-in-
dependent subjects face similar epistemological questions,
often discussed in different terms. There is the question of
how closely does the data represent reality. There is the
question of how strongly do the data support conclusions.
There is the question of how certain the results are. There
is the question of how well does the tool measure what it is
supposed to measure. There are questions about the gener-
alizability of results, and many more.

Epistemology: How?
One approach for reflecting on epistemological dimensions
of a research study is to try to map in the same picture the
question, a tentative (imagined) answer, and all the steps
in between. Different steps may involve different kinds of
epistemological stances: To what degree are the data epis-
temologically subjective or objective? Studies can be about
things like people’s preferences (more subjective), as well as
about things like people’s religious nominations (more ob-
jective, ascertainable from the population register). To what
degree does the data collection itself involve interpretation
versus recording of data? To what degree does the analysis
involve interpretation versus mechanical processing? For in-
stance, considering results, one can ask, “how much do these
results depend on the researcher’s and the reader’s interpre-
tation, attitudes, or preferences?” The more objective the
results, the less they depend on any kind of interpretation.

The formulation of the research problem, aims, and re-
search questions rely on existing research studies and re-
searchers’ interpretations of valuable and worthwhile ques-
tions, and the question could be about previously unknown
things or conflicting views. Data is not collected randomly,
and in the data collection process, only a minor part of in-
finite available data is collected, based on what is already
known about the domain. The data is collected using for-
mal or informal data structures that are created to record
or model some aspects of the phenomenon as well as pos-
sible. Because data structures are built according to what
one already knows about the domain, data cannot be inde-
pendent of one’s previous knowledge. Treating such data as
if they were ‘independent’ empirical discoveries or theoreti-
cal results has been called ‘inscription error’ [22, p.52]. All
results are also interpreted, often on multiple levels. Raw
data are often interpreted for reporting results, and results
are interpreted for discussion of findings—and in the end

the critical reader and the scientific community are the fi-
nal interpreters of the research report. There is no research
without interpretation somewhere.

Epistemology: From Subjective to Objective
Many judgments depend on individual preferences. For ex-
ample, the judgment that OS X is a good operating system is
a matter of viewpoint, and that judgment varies by people’s
feelings about aesthetics, user experience, proprietary prod-
ucts, and various other things. So, the judgment that OS
X is a good operating system is epistemologically subjective
to some degree, and many may disagree with the judgment.
There are many types of research studies that study epis-
temologically subjective matters (such as preferences and
attitudes). Some interpretive research looks at things that
rely heavily on individuals’ personal states of mind—take,
for instance, aesthetics or users’ emotions regarding inter-
face design. Many studies that try to understand individ-
uals’ meanings, interpretations, or feelings study epistemo-
logically subjective matters.

There again, there are some judgments that are consid-
ered to be more than mere opinions. Many people may hold
the same judgments (sometimes called intersubjectivity), or
those judgments may form a part of a coherent structure
of statements. For example, the statement that there are 7
OSI layers is an objectively ascertainable fact. That judg-
ment is epistemologically objective [19] or intersubjective to
a high degree. Note that although the OSI model—as a
standard created by networking professionals—exists mind-
dependently, statements about the OSI model can be objec-
tive in a sense that those statements cohere with commonly
accepted standards or definitions; they are not only subjec-
tive opinions.

Intersubjective matters can also be studied in many dif-
ferent ways. Many mind-dependent subjects can be studied
in a way that does not leave much room for idiosyncratic
interpretation—take, for instance, studies on IEEE stan-
dards or commonly agreed models. Other research stud-
ies try to understand and interpret the subjective meanings
and mechanisms between intersubjective things—take, for
instance, studies on groupware or computer-supported col-
laborative learning. Many such subjects are an outcome of
negotiation, common making of meaning, and social pro-
cesses. Indeed, there is a continuum that ranges from inter-
subjective agreements that are fixed to a high degree (state-
ments like“eight bits make a byte”) to subjective preferences
(statements like “pair-programming works well for me”). At
the highly objective end of the spectrum, with very strong
intersubjective agreement, are things like axioms in mathe-
matics and transformation rules in logic.

Objective out of Subjective
If one’s research data lies at the subjective end of the spec-
trum, that does not mean that results could not be at the
opposite, objective, end of the spectrum. For instance, a
presidential poll is essentially a survey on subjective prefer-
ences (“X would make a better president than Y would”).
The results are highly objective facts, such as the fact that
Barack Obama won 52.92% of votes in the American 2008
presidential elections. Surely such survey has various limi-
tations, such as the fact that the respondents are not a rep-
resentative sample of the population, but those limitations
do not change the vote count, which is highly objective: the

98

Table 2: Example statements with various ontological and epistemological aspects of research.
Epistemologically Subjective Epistemologically Objective

Mind-
dependent

1. It’s more fun to learn Python
than it is to learn Java

2. The Java language has fewer
reserved words than the Cobol lan-
guage has

Mind-
independent

3. Thermal noise in conductors is
an undesirable phenomenon

4. The speed of electromagnetic radi-
ation in vacuum is about 3×108m/s

election results are not an interpretation but as long as the
rules of counting remain the same, any new count of the
votes would come up with roughly the same result.

Epistemological standpoints affect, in many ways, what
a research study can achieve. Research studies that deal
with epistemologically objective matters (such as standards,
theoretical constructions, or procedures) often yield results
that can be right or wrong. Studies on epistemologically
objective as well as subjective matters can yield statistics
or empirically testable models. Studies on epistemologically
subjective matters (such as opinions, preferences, or atti-
tudes) can have a lot of variety in their results. Some of
those studies come up with objective facts whereas others
come up with interpretive, subjective results, such as case
studies, ethnographies, or other types of rich description.
The latter type of studies are often judged by their credibil-
ity, transferability, coherence, or confirmability.

The strength of many kinds of research is in the rich de-
scription they can provide of subjective things—of people’s
reasoning, motivations, fears, hopes, anxieties, expectations
and so forth. In some other kinds of research, subjectivity
is considered to be negative. All in all, many subjective as-
pects in research are unavoidable—from interpretation and
communication of results to the choice of axioms—yet those
often do not undermine the study’s credibility much. Other
subjective aspects can be avoided, and avoiding them may
improve the credibility of results. For example, in research
with human subjects, the individual researcher can make a
sharp distinction between the beliefs and knowledge of re-
searchers and beliefs and knowledge of the research subjects.
Various techniques (multiple reviewers, coding books, etc.)
can be employed to measure the level of intersubjectivity of
results. Statistics provides a multiplicity of tools for estab-
lishing confidence on results.

It is important that researchers are aware of the epistemo-
logical aspects of their research; false assumptions may lead
to decreased credibility of a research study. A researcher
should have an understanding of the human condition and
epistemic condition of the research subject. It is also impor-
tant to separate between subjects, data, and results of the
research—those are very different things.

4. DISCUSSION
All combinations of the ontological and epistemological as-

pects of research can be found in computing research. Table
2 presents examples of each combination. Sentences 1 and 2
on the first row concern mind-dependent things (program-
ming languages), while sentences 3 and 4 on the second row
concern mind-independent things (thermal noise and speed
of light). Epistemologically speaking, statements in the first
column are more subjective whereas statements in the sec-
ond column are more objective.

In Table 2, the first statement concerns learning program-
ming languages. Both learning as well as programming lan-
guages exist by virtue of our thinking, and are hence mind-
dependent. As judgment 1 is highly contextual and depend-
ent on one’s opinion, it is epistemologically subjective. The
second statement is also concerned with programming lan-
guages, which are mind-dependent. But judgment 2 is not a
matter of anyone’s opinion. Statement 2 is an epistemologi-
cally objective judgment about a mind-dependent thing, so
statement 2 is an institutional fact.

In Table 2, the third statement concerns thermal noise,
which is an intrinsic feature of conductors. Both conductors
and thermal noise are mind-independent, for both exist in-
dependent of any observers or mental states. Statement 3
is, however, epistemologically subjective, as it is contingent
on observers’ preferences. Physicists, for one, do not con-
sider thermal noise as desirable or undesirable—“it just is”—
whereas for many engineers thermal noise is an unwanted
phenomenon. In the fourth statement of Table 2, speed is
an intrinsic feature of electromagnetic radiation, which does
not know or care about any observers or anyone’s feelings
towards it. The statement 4 is not, however, anyone’s sub-
jective opinion, but an objectively ascertainable fact, and
hence epistemologically objective. Being an epistemologi-
cally objective statement about an ontologically objective
thing, statement 4 is a brute fact.

Some Difficulties and Relationships to Other Re-
search
There are topics in computing that are difficult to classify in
the categories presented above. Take theoretical topics, for
instance. Ontology of mathematics is a notoriously tricky is-
sue. For instance, Gödel [7, 8,§1] argued that mathematical
objects exist in the very same manner as tables and screw-
drivers do. In mathematics, ontological realists argue that
there are mathematical objects that exist independently of
people; ontological idealists argue that mathematical ob-
jects exist by virtue of our minds; and nominalists argue
that mathematical objects do not quite “exist” [21, 25,226–
227]. The image of mind-independence of mathematics was
questioned by, for example, Lakatos [14] and Bloor [1]. In
computing fields, De Millo et al. [3] discussed the social pro-
cesses of knowledge creation in the discipline.

In computing fields, one bone of contention is the ontologi-
cal and epistemological status of algorithms [6, 22]. Some ar-
gue that we find computations (and apparently algorithms)
in the nature—that is, they are mind-independent [20, 15,
26]. Others argue that algorithms as well as properties of al-
gorithms are mind-dependent (cf. [18]). However, in theoret-
ical branches of computing epistemological and ontological
positions in research are rarely debated, and epistemologi-
cal and ontological positions do not affect method choice or

99

research frameworks in theoretical fields. Cognitive science,
with which computer science is often linked, poses another
set of epistemological and ontological difficulties [19].

This article partly coheres with some research framework
descriptions in computing fields. For example, Hirschheim
& Klein [10] and Roode [17] adapted Burrell & Morgan’s
[2] four quadrants of sociological research to the field of
information systems: those quadrants are the functional-
ist paradigm, the interpretive paradigm, the radical human-
ist paradigm, and the radical structuralist paradigm. The
axes that cut through the four paradigms are, however, only
partly the same as the axes in this study: As the study
of Burrell and Morgan [2] was fully focused on sociological
subjects, it did not touch on mind-independent matters at
all.

Hence, the “subjective–objective” dimension presented by
Hirschheim & Klein [10] and Roode [17] is the same as the
epistemological dimension in this article, but the “order–
conflict” dimension in those studies is specific to sociological
research. Hirschheim & Klein [10] and Roode [17] divided
ontology into realism—where “an empirical organizational
reality that is independent of its perceiver or observer is be-
lieved to exist” [10]—and nominalism, where “reality is not
given, immutable “out there,” but is socially constructed”
(ibid.). The problem with the type of “ontological realism”
presented by those authors is that it argues for an inde-
pendent social reality that would continue to exist even if
all observers would cease to exist, and hence faces difficulties
with metaphysics.

Conclusions
Computing’s interdisciplinary linkages and computing re-
searchers’ increasing collaboration with people from other
fields has led to a point where computing researchers too
need to be able to understand and use some standard re-
search terminology. In many research projects it is impor-
tant that the authors can describe the mode of existence of
their research subject and some epistemological aspects of
their research data and results. Those questions—the onto-
logical and the epistemological question—are in the research
literature explained in various ways.

This paper proposes a simple way of framing the onto-
logical and epistemological questions. The paper proposes
that a computing research study’s ontological and episte-
mological linkages can be determined through a few simple
questions. Firstly, in many cases the ontological status of a
study’s subjects can be resolved by asking whether the sub-
jects, their properties, or their features exist regardless of
people’s mental states. That question creates a division into
mind-dependent and mind-independent subjects, which lead
to very different sets of methods applicable. Secondly, the
epistemological status of data, research results, and other
judgments can be evaluated by considering the degree to
which they depend on particular individuals’ judgments.
The ontological distinction is a clear “either/or” juxtaposi-
tion, whereas the epistemological dimension is a continuum;
a “more-or-less” type of a question. These two dimensions
offer a rough-and-ready starting point for discussing ontol-
ogy and epistemology in computing theses.

5. REFERENCES
[1] D. Bloor. Knowledge and Social Imagery. Routledge &

Kegan Paul, London, UK, 1976.

[2] G. Burrell and G. Morgan. Sociological Paradigms and
Organisational Analysis: Elements of the Sociology of
Corporate Life. Heinemann, London, UK, 1979.

[3] R. A. DeMillo, R. J. Lipton, and A. J. Perlis. Social
processes and proofs of theorems and programs.
Communications of the ACM, 22(5):271–280, 1979.

[4] P. J. Denning. Great principles of computing.
Communications of the ACM, 46(11):15–20, 2003.

[5] J. J. Ekstrom, S. Gorka, R. Kamali, E. Lawson,
B. Lunt, J. Miller, and H. Reichgelt. Computing
Curricula, volume Information Technology. ACM,
2005.

[6] J. H. Fetzer. Program verification: the very idea.
Communications of the ACM, 31(9):1048–1063, 1988.

[7] K. Gödel. Russell’s mathematical logic. In
S. Feferman, J. Dawson, S. Kleene, G. Moore,
R. Solovay, and J. van Heijenoort, editors, Kurt Gödel
Collected Works (1990), volume II: Publications
1938–1974, pages 119–141. Oxford University Press,
Oxford, UK, 1944.

[8] E. G. Guba and Y. S. Lincoln. Competing paradigms
in qualitative research. In N. K. Denzin and Y. S.
Lincoln, editors, Handbook of Qualitative Research,
pages 105–117. SAGE, London, UK, 1994.

[9] R. W. Hamming. The unreasonable effectiveness of
mathematics. The American Mathematical Monthly,
87(2):81–90, 1980.

[10] R. Hirschheim and H. K. Klein. Four paradigms of
information system development. Communications of
the ACM, 32(10):1199–1216, 1989.

[11] H. K. Klein and M. D. Myers. A set of principles for
conducting and evaluating interpretive field studies in
information systems. MIS Quarterly, 23(1):67–94,
1999.

[12] D. E. Knuth. Theory and practice. Theoretical
Computer Science, 90(1991):1–15, 1991.

[13] T. S. Kuhn. The Structure of Scientific Revolutions.
The University of Chicago Press, Chicago, USA, 3rd
edition, 1996.

[14] I. Lakatos. Proofs and Refutations: The Logic of
Mathematical Discovery. Cambridge University Press,
Cambridge, UK, 1976.

[15] S. Lloyd. Programming the Universe: A Quantum
Computer Scientist Takes on the Cosmos. Vintage
Books, London, UK, 2007.

[16] M. D. Myers. Qualitative research in information
systems. MIS Quarterly, 21(2):241–242, 1997.

[17] J. D. Roode. Implications for teaching of a
process-based research framework for information
systems. In Proceedings of the International Academy
for Information Management Conference, Orlando,
Florida, USA, 1993.

[18] J. R. Searle. Minds, brains, and programs. The
Behavioral And Brain Sciences, 1980(3):417–457, 1980.

[19] J. R. Searle. The Construction of Social Reality.
Penguin Press, England, 1996.

[20] C. Seife. Decoding the Universe. How the New Science
of Information is Explaining Everything in the

100

Cosmos, from Our Brains to Black Holes. Penguin
Books, London, UK, 2006.

[21] S. Shapiro. Thinking About Mathematics: The
Philosophy of Mathematics. Oxford University Press,
New York, NY, USA, 2000.

[22] B. C. Smith. On the Origin of Objects. MIT Press,
Cambridge, Mass., USA, MIT paperback edition,
1998.

[23] M. Tedre. Computing as engineering. Journal of
Universal Computer Science, 15(8):1642–1658, 2009.

[24] M. Tedre. Computing as a science: A survey of
competing viewpoints. Minds & Machines,
21(3):361–387, 2011.

[25] M. Tedre and E. Sutinen. Three traditions of
computing: What educators should know. Computer
Science Education, 18(3):153–170, 2008.

[26] S. Wolfram. A New Kind of Science. Wolfram Media,
Champaign, IL, 2002.

101

Analysing computer science students’ teamwork role adoption in an online
self-organised teamwork activity

Rebecca Vivian Katrina Falkner
The School of Computer Science

The University of Adelaide
Adelaide, South Australia, 5005

firstname.lastname@adelaide.edu.au

Nickolas Falkner

ABSTRACT
Computer Science (CS) professionals are regularly required to
work in teams to solve complex problems. Agile software
development processes are increasingly popular in organisations
as a method for teamwork but the self-organising nature of the
method and lack of strictly allocated roles means that graduates
need to know how to adopt and transition between roles
effectively. While online teamwork makes team processes and
behaviours transparent, educators are often confronted by the
amount of data and difficulty in how to judge roles and
behaviours to provide meaningful feedback to students.
Furthermore, assessment of teamwork does not necessarily ignite
a need to identify roles and behaviours as feedback is usually
based on the product, rather than processes and behaviours.

Using Dickinson and McIntyre’s teamwork roles, we extend the
framework to include explicit behaviours to analyse one class of
students’ self-organised team interactions in an online discussion
space as solved open-ended problems. The collaborative activity
did encourage role adoption, however not all students moved
fluidly through the roles. Despite the lack of defined roles, one or
two students adopted leadership roles, but attempts at leadership
were not always successful. We discovered other less-obvious
roles were equally important for maintaining and progressing
team discussions. In this paper, we discuss the roles that emerged
and suggest strategies for encouraging and assessing online
teamwork. Our framework may prove to be a guide for others
seeking to analyse students’ teamwork and provides a guide for
what behaviours a teacher might look for in online environments.
Our findings support the need to develop tools that provide real-
time visual feedback to students and teachers about student
behaviour and roles when undertaking teamwork in online spaces.

Categories and Subject Descriptors

K.3.1 [Computers and Education]: Collaborative Learning

General Terms
Human Factors.

Keywords
Teamwork; collaboration; human-to-human; students, team roles.

1. INTRODUCTION
Computer Science (CS) professionals are often required to work

in teams on complex software development projects that require
them to solve problems and accomplish complex tasks [1]. The
significance of teamwork to the CS profession is acknowledged
by CS employers, who identify that the ability to engage in
teamwork is critical to CS professional practice and therefore they
claim to seek graduates who demonstrate team skills [2, 3].
However, university students reportedly struggle with teamwork,
in terms of producing software designs [4] and in applying
collaborative skills [5]. Moreover, many CS graduates continue to
struggle with teamwork in their new workplaces [6-8] and
struggle to voice when they do not understand or know how to
achieve a teamwork task [5-7], which may cause significant
problems for their team and goal-attainment. Consequently, CS
employers identify teamwork as an area in need of significant
improvement [9].

Agile software development processes [10] are increasingly
popular in organisations as a method for teamwork but the self-
organising nature of the method and lack of strictly allocated roles
means that graduates need to know how to transition and adopt
new roles as their team requires. This places further pressure on
graduates to have a sound knowledge of effective teamwork
practice and roles; something that they currently lack. As a result
authors have called for more proactive measures and teaching of
teamwork in CS university programs [5].

To provide students with opportunities to practice teamwork and
role adoption at university, students are often required to work in
teams with peers on collaborative activities or group projects.
However, educators are faced with issues in assessing teamwork
as the processes are often “invisible” and when teamwork is
captured online, discussions may be large and complex in nature.
While some students may emerge as “leaders” and others
“inactive”, the complex nature of roles that students adopt in their
teams and how they move between roles may not be so obvious or
easily identifiable. Such issues are hampered by time constraints
that teachers often face. As a result, assessment of teamwork
usually focuses on the product, rather than on the processes that
led to the creation of the product [11]. Where assessment of
“teamwork” does occur, it is typically through self- or peer-
assessment and is usually based on post-reflection of self- and
peer-contributions to the product. Furthermore evaluations
typically focus on contributions in terms of workload, rather than
on performance as a team member. Despite feedback being an
important part of students’ learning development, such factors
make it difficult for educators to provide meaningful feedback on
students’ teamwork behaviour. Feedback is a crucial part of the
learning process as it provides learners with information about
their performance or understanding toward goal attainment [12].
Students may use feedback to alter their behaviour to meet their
goal, or by teachers who can alter learning activities or guide
students toward their goal. Since employers identify teamwork as
critical to the CS profession, assessment should not only include
feedback about technical knowledge but explicit and accurate
feedback about teamwork performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Koli Calling '13, November 14 - 17 2013, Koli, Finland
Copyright 2013 ACM 978-1-4503-2482-3/13/11…$15.00.
http://dx.doi.org/10.1145/2526968.2526980

102

As a result of the lack of assessment and feedback of teamwork in
CS, it is argued that CS education treats teamwork as something
that students will develop through ‘experience’ [5] by partaking in
a CS degree, rather than explicitly taught and assessed. Little
attention is focused toward providing students with feedback
about how to improve their teamwork behaviour or which roles
they adopt and could develop in future collaborative activities, in
preparation for the CS profession. Furthermore, there is a lack of
research that seeks to investigate assessment of CS teamwork
roles.

This paper reports on our endeavour to develop a framework for
identifying explicit behaviours that align with Dickinson and
McIntyre’s previous model of teamwork. Using the framework as
a guide, we code students’ utterances at particular behaviour
“nodes” to 1) determine if content analysis of behaviours can
provide information about the roles students are adopting in their
teamwork activity, and 2) investigate the extent students adopt
particular teamwork roles in the online collaborative activity. We
use the results to inform 1) what roles students are adopting in
online self-organising teams to solve complex open-ended CS
questions, 2) to determine if the identification of roles can inform
us about how to adapt the course to encourage role adoption and
development and 3) to determine if such a process of analysis
would prove to be useful for devising automatic feedback tool to
students and teachers in the future.

This paper is situated in the context of reflecting on a re-design of
a number of key courses across the Computer Science curriculum
to incorporate activities that involve collaboration and content
creation, with one aim being to encourage students to actively
participate in teamwork. We explore mechanisms for evaluating
the agile teamwork roles that may provide indication of
performance and in doing so observe CS students in an online
Computer-Supported Collaborative Learning (CSCL)
environment as they solve open-ended problems in the domain of
networking. We construct a coding framework devised on the
work of Dickinson and McIntryre’s teamwork model [13]. This
work helps us understand the roles that students adopt during
teamwork and further facilitates academics in providing guidance
to students regarding role occupancy, efficacy and management,
and how students can develop effective online teamwork
processes.

2. RELATED WORK
Our discussion of related work to this study begins with a
discussion of the importance of teamwork to CS and teamwork
roles identified in the literature. Our discussion concludes with a
discussion about how teamwork is currently assessed in higher
education and our motivation for the study.

2.1 Teamwork in Computer Science
Online teams or virtual teams are ‘geographically,
organizationally and/or time dispersed workers brought together
by [ICTs]’ to accomplish a task [14]. Although “teamwork” refers
to team performance, effectiveness, or the individual team
members’ contributions to the team [11], teamwork does not
necessarily mean team success. Success may be influenced by
factors such as individual contributions, the context, and the
history of team members. Successful teams are identified as agile,
self-organised, have defined objectives, monitor and evaluate
progress, and have equal member participation [5]. In virtual
teams, those who reflect on group processes and employ strategies
to improve team performance are more successful [15]. Computer
scientists are increasingly required to collaborate across

distributed networks and use ICTs for teamwork purposes as they
are affordable (or free), allow for collaboration and sharing,
regardless of time or place, and are part of a computer scientists’
professional’s immersive environment.

The agile manifesto [16] is one popular software development
method that requires individuals to operate in self-organising
teams and is a method which favours individuals and interactions,
working software, customer collaboration and response to change
[17, 18]. Reflection is identified as a key behaviour, where teams
determine more effective ways of operating and adjust their
behaviour accordingly. In preparation for self-organised
teamwork approaches like this, we need to ensure that our
students are prepared to proactively participate in a group and that
they know how to adopt certain roles as their group requires.

2.2 Teamwork Roles
In teamwork, members may be assigned specific roles or allowed
the freedom to self-organise. In self-organising teams, members
often display spontaneous role behaviours and, despite the
omission of a designated leader, planning behaviours still emerge
[19]. However, it has been found that a lack of coordination
behaviours exist in comparison to teams with allocated roles [20].
Furthermore, leadership is not usually dispersed evenly among
members of self-organised teams and leadership behaviour may
alternate between individuals, depending on who has the specific
abilities and skills required for the team at a point in time [20].

To encourage students to practice various teamwork roles and
build confidence in their CS program, one method used might be
to scaffold students in various team roles using the pedagogical
approaches similar to Contributing Student Pedagogy (CSP) [32].
The educator may demonstrate particular roles or allocate and
rotate roles to students in collaborative tasks. In these tasks,
students are implicitly or explicitly encouraged through team roles
and are made aware that one can transition between roles. To
teach the roles, educators might adopt published models of
teamwork as a guide. There have been a number of teamwork
models that have emerged in the literature and we will proceed to
discuss some of the models and their relevance to CS.

Teamwork role identification is a topic of interest in management
science and psychology [13, 21-23]. In response to the recognition
that research on teamwork was fragmented, Salas, Sims [22]
undertook an extensive review of the literature to classify
common teamwork components and as a result identified five core
components of teamwork: team leadership, mutual performance
monitoring, backup behaviour, adaptability, and team orientation.
While an advantage of their model is the solid grounding in
literature, a critique of their work is that their model is not focused
toward self-managing teams [18].

One teamwork model that focuses on practical use and self-
organising teams [18] is the Dickinson and McIntryre model [13].
In a review of the literature on teamwork, Dickinson and
McIntyre [13] identified a need to focus on components of
teamwork to develop assessment measures. In their work they
classified seven core components of teamwork: Team Leadership,
Team Orientation, Monitoring, Coordination, Communication,
Feedback and Backup Behaviour (see Table 1) and a model to
guide the construction of measures. The authors recommend three
formats for constructing teamwork measures: a behavioural
observation scale, behavioural summary scale, and behavioural
event. While their model is focused on practical use and self-
organising teams [18], the measurement relies on how teams
respond to critical events according to scales, rather than the

103

explicit identification of behaviours. Furthermore, because the
measures involve post-critical incident evaluation they may not
necessarily be useful for real-time evaluation of online behaviour.
Moe et al. [17] used the teamwork model in a holistic
investigation of essential teamwork components found in agile
software teams in organisations. They discovered barriers to team
effectiveness existed in problems with team orientation, team
leadership, coordination and division of work. They claim that
within organisations there are significant challenges with moving
from individual work to self-organised teamwork [17] and that
some leaders focused on their own processes, leaving others to
ponder what they are doing [24].

Hoda et al. [25] also investigated agile software teams in
organisations and identified certain roles, similar to those
previously discussed, important for agile teams. These six roles
were categorised as mentor, co-ordinator, translator, champion,
promoter, and terminator. The findings are important for
understanding roles that professionals adopt to develop software,
however we are interested in developing students’ role adoption
and this is better enabled by exploring teamwork using existing
roles so that the identification of underused roles can be made.
Furthermore, these examples are situated in organisations, where
team members are often working on long-term projects with
colleagues whom they are familiar with, however, there is a great
deal that can be learnt and improved by studying the way that CS
students come together and behave for small team projects.

2.3 Teamwork Assessment & Feedback
In higher education, we hope that students in self-organised teams
adopt and transition between various teamwork roles with equal
participation. In reality, many students express a dissatisfaction
toward teamwork because of negative experiences with the
inequality of member participation [26], the presence of perceived
“slackers” [27] and pressure to complete a majority of the
workload when peers are not contributing [26]. Assessment at
university does not necessarily favour students in these situations
as teamwork assessment often focuses on the product, rather than
individual contributions and team processes. To address this
concern and make students more accountable to the team project,
efforts are made to assess students based on their involvement,
such as by peer review, self-reporting, and group assessment
reports. However, a review of the literature on these methods
reveals that the components measured largely focus on student
contributions. Some examples are the use of the ‘contribution
matrix’, percentage-sharing scheme, and self-and peer-ranking
methods [28]. Such an assessment focus may result in team
fragmentation and a concentration less on teamwork processes
and more on individual achievement and knowledge contribution.

There are arguments that if teamwork is not assessed in course
activities, students generally will not take it seriously or do it [28].
While teamwork assessment that focuses on contribution may
encourage student contributions to the task, if we want students to
begin thinking about the way they engage in teamwork by their
behaviour, roles and types of contributions, we need to find ways
to assess these aspects.

2.4 Motivation
There is considerable unanimity over workplace skills required in
Australia and overseas and while the non-technical skills
employers demand have not changed much over the last 50 years,
the expectations and priority given to certain skills has changed
[29]. A recent report reveals a growing trend toward a need for
higher-order skills, which includes ‘the skills and knowledge to

work effectively as a member of a team’ [29]. Simply measuring
by ‘contribution’ or ‘product’, often captured by assessment
methods, does not capture the dynamic and complex skills and
knowledge required to operate effectively as a team member; for
example, the ability to fluidly move between ‘roles’ as required
by a team. In the context of this study, students are responsible for
developing their own graduate attributes, with teamwork being
one [30]. More specifically, it is envisioned that the CS will
produce graduates who operate effectively as members of multi-
disciplinary and multi-cultural teams, who have the ability to lead
or manage as well as behave as an effective team members [31].

Recently, our Computer Science programs have undergone a
review and update of its curriculum, using Contributing Student
Pedagogy (CSP) as a guide, to re-design key courses across the
curriculum and instil a focus on student content-creation and
collaboration. For an in-depth discussion about the approaches
and design undertaken these are reported in a paper that detail the
mixed-methods participatory action-research used to inform the
re-design [32]. One focus of the re-design was informed by the
use of CSP in conjunction with Dickinson and McIntyre’s
teamwork model. An aim of the re-design was to incorporate the
value of student perspective and establish student-to-student
networks in which students are active and willing participants.

Teachers will not be available to guide teamwork practices when
graduates enter the workforce and this leads us to ponder whether
the CSP and teamwork activities we implement prepare graduates
to engage in fluid role adoption and participate effectively in self-
organising teams. Our experience tells us that, at a surface glance,
some students are more active than others are and little is known
about what characterises team involvement and what those
behaviours mean for teamwork. We often assume that students
develop teamwork skills through participating in teamwork
activities [5], however, how can we ensure our students have
effective teamwork skills and how can we assist students to
develop skills they are lacking?

3. RESEARCH METHODOLOGY
This research project sought to answer the following research
questions:

1. Can a framework with the identification of teamwork
role behaviours assist us in identifying teamwork roles
students adopt in an online environment?

2. What teamwork roles do students adopt in self-
organised teams to CS solve problems?

An instrumental case study approach allowed us to use a
particular case to understand students’ self-directed teamwork
roles and collaboration in a CSCL environment [33, 34].
Additionally, it allowed us to refine and test our coding
framework. A small case size, although not generalisable, allows
for an in-depth examination of the interactions and behaviours
between individuals [35]. In this study, we examined a final year
undergraduate CS course because students in this year level have
had practice in teamwork activities throughout their degree and
we hope students are able to demonstrate teamwork skills and
adopt roles as required.

3.1 Case Context
This case study is conducted with one CS course at the University
of Adelaide. The course chosen as the case study for this research
structured around the discussion of complex problems inherent
with computing operations carried out across a network, over
more than one computer. We deliberately introduce the students to
practical problems and thought experiments that are open-ended

104

and we expect students in this final year undergraduate course to
apply their knowledge and to synthesise solutions. The summative
assessment includes three individual assignments and an exam. In
addition, the course involves three collaborative tasks that
contribute a modest 2% of the student’s final grade. The role of
the collaborative sessions is to expose the students to difficult
problems that require them to consider all of the possible issues
that could occur during tasks carried out in this domain. The first
collaborative task was conducted as a face-to-face activity, and
the final two collaborative tasks, which were observed for this
study, were conducted online. The first task asked students how
they would implement an Adaptive Timer System based on a
previous assignment that used the Java RMI system. Students
were required to write a report to provide architecture for
implementing the adaptive time on both the client and server side
and consider the design issues. The second task invited students to
devise a network design and discuss issues associated with the
creation of a Massive Multi-User Online Roleplaying Game
experience.

The instructor randomly allocated the 26 students to one of eight
groups for the collaborative tasks. Each group was required to
construct a joint wiki response in the collaborative software site,
Piazza [36], by editing the contents of a page, to address the
problems posed. The Piazza framing for this concept includes the
allocation of two development spaces: one for students and one
for the instructor. Instead of the traditional comment-response
model found in traditional online environments, a Piazza solution
exists as a whole. This allows students to review the current
“best” solution easily without having to compose a set of existing
responses in a potentially complicated semantic alignment. It is
unlikely that one student holds all of the expertise in an area,
which we hope encourages fluid transition of roles and the sharing
of information between those who hold particular expertise at a
point in time. Students were instructed to hold their team
conversations using the Piazza discussion feature, positioned
underneath the wiki. This paper reports on analysis of the
discussion component of the activity.

3.2 Coding Framework and Content Analysis
We chose to focus on the identification of roles based on those
proposed by Dickinson and McIntyre [13] because the roles
encapsulate those we hope CS students would adopt and they are
commonly taught to our students in CSP activities [32]. Dickinson
and McIntyre [13] provide a summary description and allude to
what each role’s behaviour might involve, however, they lack
explicit behaviours to look for, particularly in online interactions.

In their framework, Dickinson and McIntyre adapted the critical
incidents methodology [37] to construct teamwork measures,
using anti-warfare teams as a case to guide their measures.
Although, the measures are valuable, they are critical incident
reports and are for post-hoc measurement of self-organised
teamwork. When studying the roles that our CS students adopt,
we would like to measure their activity through the identification
of particular behaviours associated with roles, with the intention
to make this automated in the future. While scale measures of
competency may be useful, we wished to make these as accurate
as possible using frequencies from the utterances of student
activity. Therefore, we needed to develop a measure to
appropriately identify behaviours one would expect to see in
students problem-solving in CSCL environments. To achieve this
we examined online CSCL behaviours identified in frameworks
from argumentative knowledge construction [38], collaborative
knowledge construction [39], and learning processes in CSCL

environments [40] and selected the identified behaviours that
matched role behaviours and sorted these accordingly, as we saw
fit, to each of Dickinson and McIntyre’s seven components of
teamwork (see table 1). While the CSCL studies concentrate on
understanding behaviours and processes exhibited in CSCL
environments, rather than role adoption among team members, we
feel that the behaviours they identify are useful as indicators for
coding behaviours that can then be sorted within team roles.

Table 1: Teamwork Roles (Dickinson & McIntyre) with the
coding behaviours

Components of Teamwork &
Description ([13], p. 25)

Role behaviours

Team Leadership: Involves providing
direction, structure, and support for other
team members. It does not necessarily
refer to a single individual with formal
authority over others; several members
can show team leadership.

Restate problem; identify
problem space; identify new
problems/components of the
problem to address; initiate
group planning; elicit group
responses/involvement.

Team Orientation: refers to the
attitudes that members have toward one
another and the team task. It reflects
acceptance of team norms, level of group
cohesiveness, and importance of team
membership.

Social presence aspects and
group cohesion: use of inclusive
pronouns; communication that is
social or a function of social
communication; expression of
emotions/humour

Monitoring: refers to observing the
activities and performance of other team
members, It implies that team members
are individually competent and that they
may subsequently provide feedback and
backup behaviour.

Monitor group processes,
monitor group progress, monitor
group activities.

Coordination: refers to team members
executing their activities in a timely and
integrated manner. It implies the
performance of some team members
influences the performance of others.

Report learning activities and
processes; initiate goal setting.

Communication: involves the exchange
of information between two or more
team members in the prescribed manner
and by using proper terminology. Often
the purpose of communication is to
clarify or acknowledge the receipt of
information.

Monitors/expresses own
cognition or monitors cognition
of peers; identifies conceptual
problem space (knowledge
required); elicit peer elaboration
of information; rephrase
previous claims (own or others).
Responds to others’ initiated
goal-setting or planning.

Feedback: involves the giving, seeking, and receiving of information among
team members. Sub-components: giving, seeking, and receiving feedback.
Giving feedback: refers to providing
information regarding other members’
performance information among
members

Evaluate or assess peer
contributions (express
agreement/disagreement,
counterarguments, and critical
evaluation).

Seeking feedback: refers to requesting
input or guidance regarding
performance.

Seeks critical evaluation or
feedback to contributions.

Receiving feedback: refers to accepting
positive and negative information
regarding performance.

Accepts feedback about
performance.

Backup Behaviour: involves assisting the performance of other team
members. This implies that members have an understanding of other
members’ tasks. Sub-components: seeking and supporting feedback activities.
Seeker: Members are willing and able to
seek assistance as required.

Seek information from group;
seek social assistance about
group task/processes from group.

Supporter: Members are able and
willing to provide assistance as required.

Elaborate on previous
contributions, integrate ideas;
revise previous contributions.

105

We also included regulation behaviours from the works of
Zimmerman [41] to capture behaviours that involve students
reflecting on their own and their team’s processes and included
any of those relevant behaviours within the teamwork roles. We
also saw the value in dividing Dickinson and McIntyre’s roles of
Feedback and Backup Behaviour into their sub-categories for
analysis as “seeking” and “providing” behaviours are different in
their purpose and we wanted to know when students were
providing support or seeking support.

We employed directed content analysis [42] to code students’
online teamwork discussions, using the framework behaviours in
Table 1. For actual coding purposes we developed a fully
comprehensive guide that included each behaviour within the
particular role. Each behaviour included a description of what the
behaviour might involve and a quote as an example, taken from an
initial pilot exploration of the students’ online activity. For an
example, we include in table 2, the behaviour of ‘identifying the
problem space’ taken from the ‘team leadership’ role. Under each
teamwork role, more indicators would follow which are those
listed in Table 1 under the column ‘role behaviours’. The
developed coding guide was presented by the researcher to two
CS academics at the university, experienced in CS education
research and teaching CS to university students. The two
academics confirmed that the behaviours aligned with the roles
and that the descriptions and examples of behaviour in the guide
were appropriate.

Table 2: Example of the coding guide

Behaviour Description Example

Team Leadership
Identifying the
problem space

Retelling or
rephrasing of the
original problem
or questions.

“I think there are a number of
points we need to consider…”
[student lists points]

An important aspect of content analysis is to clarify the unit of
analysis to be coded prior to coding. Previous studies that have
involved coding student CSCL collaborations [19, 39, 40] and
teamwork roles [43] have coded discussion posts by students in
their entirety as the unit of analysis. However, the basic unit of
analysis in this project were coding units [44], which included
sections of text responses or “utterances”, of any size. Sections of
text, such as a sentence, word or phrase, were coded as long as the
selection represented a single category in the framework [42].
Focusing on the micro-level of text in postings is important
because broad-scale coding may lose fine-grained behaviours and
multiple role adoption that might be evident in a single post.

The use of numbers in qualitative content analysis provides
precision to the frequency, observations, and patterns of a
particular phenomenon being investigated [45]. Our desire was to
extract quantitative frequencies of the content analysis and so we
coded data as being within a mutually exclusive category [42].
Frequencies of student activity in NVivo were exported to a
Microsoft Excel spread sheet, for further examination. The
content analysis frequencies, combined with qualitative examples
of student activity allow for a rich picture of student teamwork
practices.

Discussion data from Piazza were coded using the qualitative
software NVivo 10. One researcher, experienced in using NVivo
for content analysis, methodically worked through the discussion
data for each group, coding the conversation data to the relevant

behaviour category, which was organised under the teamwork
roles. To ensure reliability, the coding process was iterative by
reviewing coded content and refining codes. The researcher began
coding the activity, starting with two student teams. Before going
further the researcher ‘explored’ the data by re-reading the coded
text and checking the coded text against the coding guide. These
processes were undertaken to ensure coding was consistent and
reliable. The researcher continued to complete the coding for all
teams. The researcher clarified coding results with the two CS
academics in stages throughout analysis. Our future work will
include conducting inter-rater reliability testing on more samples
of data.

4. RESULTS
The following sections present the findings obtained from the
analysis. We begin with an examination of the overall frequencies
of roles across all tasks and groups and present how students were
adopting the role with examples of students’ quotes and
summarised behaviours. The second section examines role
distribution across the groups and we select 2 groups that are
contrasts of one another to provide a more detailed analysis of
how the identification of teamwork roles can provide insight to
how teams are performing and interacting.
4.1 Frequency of Teamwork Role Behaviours
Table 3 presents the coding frequencies for the teamwork roles
across both collaborative tasks, calculated according to the total of
teamwork behaviours coded. The findings suggest that students
were engaged primarily in leadership, team orientation and
response behaviours; however, less frequently displayed
behaviours that involved monitoring and regulation of group
processes.

Table 3: Frequencies of teamwork behaviours across all
groups and activities

Teamwork
categories Freq. (%) Mean Std. Dev.

Orientation 47.2 27.5 23.4
Leadership 15.5 9.1 8.7
Feedback (provider) 15.1 8.8 6.2
Coordination 3.1 1.8 2.9
Monitoring 2.2 1.3 2.9
Communication 7.8 4.5 3.1
Backup (supporter) 4.7 2.7 2.4
Feedback (seeker) 2.3 0.9 1.5
Backup (seeker) 1.6 2.7 2.4

The following section provides qualitative examples of how
students were engaging in the various active and passive
teamwork roles within this online collaborative context.

4.2 Students’ Teamwork Role Behaviours
4.2.1 Team leadership
A number of the team leadership behaviours were initiated (6.8%)
posts, and therefore, it was not surprising to find students exerting
a leadership role in the first post. For example, one student
prompts:

Hey guys, let's get it started…. Let's identify the problem first so
that we can derive a solution (student 3).
Leadership behaviours involved instances where students would
direct the group toward an aspect of the collaborative problem.
For example, students would specifically re-state or rephrase the
question or component of the problem. Students typically used
this as a strategy to draw attention to what aspect of the problem

106

they were referring to, or to encourage members to respond to an
aspect of the problem. For example, one student proposed to his
peers:

I'm expecting some kind of further discussion on ALL those areas
(student 12).
Leadership also involved instances where students delegated tasks
to specific individuals. For example, by asking: ‘Could [student
25] do the honor to do the full revised answers for question2?’
(student 11). Similarly, a number of students sought group
consensus on particular aspects of the task so that the group could
progress. This was particularly noticeable when the conversation
became stagnant or divided. For example, one student (5) makes a
stand and requested of their group: ‘ALL AGREE???’. By
someone taking charge, fruitful conversations would follow.
Leadership behaviours complemented Team Coordination
behaviours.

4.2.2 Coordination
Coordination involved goal-setting and reporting activities.
Across all groups, only one student initiated setting a goal for the
completion of the assessment task prior to the deadline. He did
this by requesting: ‘Shall we give ourselves a cutoff timing to
finalize our question by Thursday evening?’ (student 11). The
other students eventually agreed to this proposal; however, it took
the student three comments in each collaborative task for the
group to respond. Another aspect of coordination involved
students stating their task performance to the group. For example,
one student reported to their group: ‘Have added my answer for
question one’ (student 4). Often such an action would be one of
the first initiated posts, to which discussions about the
contribution, or further development of the solution would follow.
Statements of performance appeared to be a way to manage group
task completion and notify team members of progress.

4.2.3 Monitoring
Monitoring involved awareness of group processes and
performance and acting on that knowledge. This included
judgments about discussion progress toward the task, such as, ‘... I
think the discussion for this particular follow up is at least getting
somewhere’ (student 12). Students were also displaying
monitoring behaviours about the topic being discussed, and would
comment when they perceived conversations digressed off-topic,
bringing the focus back to the task. This would involve a student
making a statement that signals to the group the conversation is
moving away from their desired outcomes. For example, one
student notices that, although the team conversation is active, the
discussion is moving away from what they are being asked to
achieve. As a result he suggests: ‘[s]ince this is rather off-topic,
we may continue discussion offline’ (student 7). In addition,
students engaged in assessing and monitoring group processes to
provide group direction toward certain tasks, for example:
‘[t]onight is the cutoff time, it would be great to start revising the
answer’ (student 11). Alternatively, students made statements
when they perceived the group had reached reasonable completion
of a task. Such task-navigation behaviours were important for
team processes.

4.2.4 Team orientation
Team orientation characterizes the level of social presence one
brings to the group, rather than a specific role one would adopt in
a team. Such characteristics included the expression of emotions,
expressed through emoticons and the use of humour. Socialization
was another aspect of this component, which included the use of

communication that was social in its nature, such as ‘hi’, ‘hey’
and ‘thanks’ and the use of inclusive pronouns such as ‘we’, ‘our’
and ‘us’ when discussing the task. Students would often refer to
others’ messages, or address specific team members by following
up with the use of member names. Although this aspect of
teamwork is not necessarily an active role, in the sense of
leadership, it appeared that students who engaged in such
practices were actively involved and connected to their group in a
social and task manner.

4.2.5 Communication
Communication essentially involved the clarification and
reception of information. Students displayed communication
behaviours by identifying the conceptual space, such as, ‘[w]e
should probably first identify the two types of locks’ (student 6).
Communication also involved students monitoring their own
cognition. For example, students would share their understanding,
or lack of to the group by stating something such as, ‘..not quite
sure what this questions means… ‘(student 23). To seek
clarification and reassure their understanding, students would
elicit elaboration from group members, such as by requesting:
'Can [you] explain what retries are you referring to?' (student 25).
In response, students would rephrase contributions to clarify
understanding. In addition to monitoring their own cognition,
students displayed an awareness of their peers’ understanding by
making an announcement and/or rephrasing a previous
contribution. This was important to correct misunderstandings,
particularly in terms of course content or when a member
appeared to misunderstand a proposed solution. One example is
when a student stated: ‘maybe i didn't phrase it correctly’ (student
19). Additionally, students would also follow-up, or check group
cognition by eliciting a response that sought to clarify
understanding. Communication behaviours were important for
information sharing and knowledge construction and also allowed
for students to peer-tutor one another and share expertise and
knowledge.

4.2.6 Feedback seeking
Feedback seeking entailed occasions where students would seek
feedback about contributions they posted. This would typically
involve requests from students to review their wiki contributions,
such as, ‘Feel free to contribute any suggestions or improvements’
(student 4). Alternatively, students would explicitly seek peer
evaluation, such as ‘do you think it will be better this
way?’(student 11). Feedback seeking behaviours generally
resulted in students critiquing and evaluating peer contributions.

4.2.7 Feedback provider
Feedback provider included behaviours where students provided
evaluations to their own or other's contributions. In addition,
students were engaged in critical feedback to contributions
through statements of agreement, disagreement, or judgments. We
observed some critical feedback such as the following:
‘I think that if we send out request and probe together we can
reduce the delay of the first probe. But if we send out probe first
to test if server is alive it sounds weird…’ (Student 12)
Feedback also included instances where students would
compliment one another, such as: ‘I believe (student) and
(student) have indicate some great points for the RPC timer’. Such
evaluations were supported with reasoning. At times, this
feedback was requested by feedback seeking behaviour. Feedback
was an essential component to the knowledge construction
process and a way for students to derive a successful solution to
the problem.

107

4.2.8 Backup seeking
Backup seeking comprised of instances where students would
seek help from their group in relation to task processes, such as,
where to discuss the content, where to post responses, or the
assessment details. One example is when a student asked:

are we base on the future rmi or multi thread server system that
we discuss in the previous collaborative? (student 20).

In addition, another backup seeking behaviour involved students
seeking information from their group about course content or task
content.

4.2.9 Backup behaviour
Backup behaviours were supportive and involved those that
involved elaborating on existing contributions, integrating ideas
(building a consensus between members) and revising work.
These were often in response to group member requests, or self-
initiated. The behaviours appeared to ‘keep the peace' and assist in
the construction and application of knowledge toward the
problem. For example one student attempts to integrate both
student contributions by proposing: ‘I think we should incorporate
a bit of both solutions’ (student 15). Such behaviours were more
so about building on existing ideas, than initiating new
contributions.

In this context we did not observe students providing feedback
about performance although we did observe them providing
feedback about other aspects, such as content or proposed
solutions. Rather than explicitly acknowledging the feedback
provided, the feedback would ignite other responses or assist in
the continuation of discussion. As a result, we did not code any
behaviours for ‘feedback receiver’ but this is not to say that it
would not arise in other CS teamwork contexts.

These roles and behaviours have provided insight into the overall
processes. The following section will explore the adoption of roles
by individuals within each group.

4.3 Role Distribution
Figure 1 reveals that all groups had higher levels of Orientation
and Leadership in comparison to their other roles, except group 3
who had low orientation and some evidence of leadership.
Orientation represents cohesiveness of a team, which indicates
that the team displayed low cohesiveness, but overall the group
did have low interaction altogether. Other role adoption is
generally low across all groups, with a number of roles having ‘0’
frequency or just above.

We selected two groups to highlight and discuss role adoption
according to the frequency of their behaviours for each role, for
the purpose of this paper. We selected, group 6, with both high
activity overall (Figure 2) and, group 3, with low activity (Figure
3). The graphs illustrate the dispersion of individual’s behaviour
frequencies for each role within groups.

In group 6, all members were actively involved in editing the wiki
response and contributed in some way to the discussion by
integrating and responding to ideas. Two of the four students
displayed frequent leadership behaviours, with another providing
some leadership support. Student 22, however, although not
obvious when looking at the discussion board, demonstrated less
self-initiated role adoption. Overall, this group, across both
collaborative activities demonstrated role adoption primarily in
leadership and orientation, but also coordination, providing
support and feedback and somewhat evidence of monitoring

group processes and seeking feedback. This team produced a wiki
response that was complex and detailed.

Figure 1: Scatterplot of observed role behaviour frequencies

present in each group

In comparison, role adoption activity in group 3 was minimal. The
discussion board comprised of two threads, where one student
attempted to initiate discussion among members. However,
despite attempts to lead the group, none of the other members
responded. This resulted in the “leading” student (19) to create the
wiki response primarily on her own. In the second task, the
“leading” student edited the wiki, without attempting to initiate a
discussion. The previous task saw the course instructor provide
lower marks to the two non-participating team members, which
may have encouraged one student (8) to participate and contribute
to the wiki. Both wiki products from this team were basic and
contained dot points, with little evidence of discussion.

Figure 2: Radar graph of students’ observed role behaviour in

group 6

108

Figure 3: Radar graph of students’ observed role behaviour in

team 3
The two student groups presented indicate that students vary in
the frequency of role behaviours. It also highlights that the
existence of a leader to initiate discussions does not always result
in high activity. The radar graphs illustrate that we can encourage
these students to adopt a variety of other roles, in particular those
that relate to group processes: coordination and monitoring.
Although not conclusive, the results suggest that the frequency of
role adoption evident in the discussion may contribute to the
quality of students’ wikis. The following sections will summarize
the findings in light of the literature.

5. DISCUSSION
Dickinson and McIntyre’s measurement of teamwork roles is
usually measured post-incident and along a scale measurement.
Our research has demonstrated that their teamwork model can
also be a useful framework for guiding more detailed measures of
online activity. We demonstrate this can be achieved by explicitly
listing behaviours associated with their teamwork roles so that
content analysis can be applied to students’ discussions by coding
the students’ utterances to explicit behaviours. Furthermore, by
identifying behaviours that represent each role, we alleviate any
vagueness of the roles, making it much clearer as to what each
role should involve. Behavioural data collected can provide
results about the roles students adopt by calculating the
frequencies of total behaviours for each role. The frequency data
collected by our analysis of teamwork behaviours can be
presented visually as graphs to illuminate how students are
performing in particular teamwork roles, particularly by
comparing students within teams according to their role adoption.
In doing so, we can visually see where students are reasonably
inactive and potentially ‘at-risk’ or putting pressure on other
group members to take on a majority of the workload.

The results confirm that students in self-organised teams are self-
initiating the adoption of some teamwork roles defined by
Dickinson and McIntyre [13]. However, the frequency of
behaviours within the roles varied: students were more commonly
displaying behaviours associated with orientation, leadership and
proving feedback. The ability to negotiate group goals, monitor
and regulate group processes is identified as critical for self-
organising group success, particularly for agile teams, as
reflection on team performance is what members rely on to adapt
behaviours and improve performance [16], but, we observed that
team goal-setting and regulation of processes were scarce in the
student discussions. In online agile teams, it is suggested that

teams intermittently perform this behaviour [16] and it could be
argued the ability to communicate reflections about team
processes and performance is vital and should be part of a team’s
communication. Although one strategy is for educators to model
roles and role transition in the classroom [32], it begs us to
question what roles are being modelled and explicitly taught and
whether there might be a tendency to focus on positive
“orientation” behaviours, leadership and feedback, and less on
seeking support, team coordination and monitoring. Furthermore,
in university teamwork, educators may request students to engage
in collaboration and provide a “participation mark” in an online
space; but this may cause students to assume a focus on
knowledge-construction and frequency of “contribution”, rather
than reflection on collaborative processes.
It becomes apparent that leaving students to develop teamwork
skills through experience is not enough [5]. To what extent are we
facilitating the process of teamwork skill development within
courses and across our CS programs and how does assessment
influence students’ behaviour to engage and/or develop
confidence and skills in teamwork? How are we measuring
change and providing feedback to students about teamwork? Such
questions raised instil a need to be critical of our role in students’
teamwork development so that we are preparing graduates who
not only know content, but are able to behave effectively as team
members. Activities and assessment can be designed to better
support teamwork development. Teachers could present students
with teamwork models and discuss or design activities that
emphasise particular roles and expected behaviours. Alternatively
teachers could use or develop a model like ours (table 1) or ask
the class to identify behaviours they think would represent each
role, which could engage and involve students in creating and
adhering to their own teamwork expectations. Teachers could
request “reflection of team processes” as one component for
students' participation grades to encourage meaningful
participation as a team member and encourage reflection on team
processes. Alternatively, assessment tasks could request that
students reflect on their group’s performance and processes and
ask students to post their reflections in discussion spaces or write
reflective essays discussing the extent they adopted particular
roles and what they intend to do next time to improve. Future
research could determine strategies, like these suggested, that
support teamwork development and team processes and determine
how the design of activities and assessment influence students’
self-initiated role adoption and development.

Similar to studies where leaders emerge in software organisation
teams [19], one or two leaders usually emerged in the teams
observed. These leadership and coordination roles could be
described as the “glue” or structure to the team collaboration, as
they require students to initiate, lead, and monitor the group
process. However, responsive and supportive roles are equally
important for the construction of ideas and solutions in a
collaborative task as they involve having a sense of group
awareness, reflection of processes and learning of self- and others,
and the ability to seek help when required. Seeking behaviours are
also important, as they require students to express lack of
comprehension; a skill that new graduates often struggle with [5-
7]. Essentially, both spectrums of behaviours are necessary for
collaboration and it appears to be important that team members
strike a balance between the two types.

One or two students were noticeably disengaged from the task and
these students were at times unobvious in discussion activity.
Such students may be those who go unnoticed, particularly in
online collaborative tasks, and are at-risk of failing. This lack of

109

engagement from particular individuals appeared to place pressure
on those trying to enact leadership or coordination behaviours and
resulted in some students having to take on a majority of the
workload or "leading" students to try to motivate members
through the task. Workload allocation was also an issue in
software organisations [17] and a number of studies have found
students dislike group work because of unfair participation. We
saw examples where attempts to lead the team were not always
successful and despite continued attempts to motivate peers and
initiate discussion, sometimes leaders received no response. These
findings support why students often dislike and feel anxious about
teamwork [26, 27] and emphasise the value of illuminating
student participation by having students collaborate in an online
space. Visibility of collaboration provides educators with an
opportunity to monitor participation and roles and determine if an
intervention is required. However, in the workplace, there will not
be a “teacher” available to intervene and students need to be
equipped with skills to manage poor peer team-participation in
constructive and positive ways. This problem might be alleviated
by encouraging students to be aware of their own active and
passive behaviours and by encouraging students to transition
between behaviours as the need arises to alleviate workload
pressure on particular members.

5.1 Limitations and Future Research
This is a case study of one 3rd year CS class and a “snapshot” of
teamwork for students in one semester, offering potential for
comparisons with other cases. Students’ behaviour in teamwork
activities may change across their degrees and such findings may
provide guidance about how to structure teamwork activities
across the program to develop skills. We focused on role adoption
across groups and within groups; our future work will compare
the findings in this study to a robust evaluation of students’ wiki
products to determine if role adoption affects the quality of work
produced.

Our framework that guided our analysis included a number of
behaviours we associated with each of the teamwork roles
identified by Dickinson and McIntyre. However, we realise that in
some cases particular behaviours could be appropriately suited to
more than one role. This offers opportunities for other researchers
or educators seeking to analyse student teamwork to identify the
behaviours they expect to be evident of particular roles, or
alternatively roles they would like students to enact. Furthermore,
researchers could take an exploratory approach to analysis and
code behaviours as they arise, creating their own behaviours and
connecting them with roles. Alternatively, in a practical sense,
educators could have students identify explicit behaviours they
feel should represent each role and follow-up with an assessment
of their teamwork based on the class-constructed behaviours. In
involving students in the assessment process it may assist them in
becoming familiar with teamwork roles and expectations and
therefore assist post-reflection of theirs and others’ of processes.
While we encourage other approaches to investigating teamwork
behaviours, our work has contributed to the field by identifying
particular behaviours and in encouraging an active approach to
assess student teamwork, beyond outcomes or contributions.

Our findings demonstrate the value in visualising such data and
the need to continue to investigate ways to make this data
available to students and teachers in “real time” so that they can
reflect on their behaviour and adapt accordingly. We will continue
to investigate how to include teamwork processes and skills into
assessment so that students can be provided with meaningful
feedback that will assist them in improving their skills for

subsequent teamwork tasks. We hope that others working in the
field of learning analytics will be seeking to provide meaningful,
real-time data about how students behave.

6. CONCLUSIONS
Our research has demonstrated that using Dickinson and
McIntyre’s model of teamwork, with the extension of explicit
behaviours has proven valuable in providing us with information
about how students are performing in online teamwork. We found
that students were self-initiating leadership and coordination roles,
however these were greatly dependent on how their team mates
responded. Encouraging students to practice leadership roles is
important, but we stress the need to practice responsive and
supportive roles as well. In our analysis we did identify a lack of
team regulation and goal-setting behaviours, suggesting that
educators may need to scaffold students to engage in behaviours
that are vital for monitoring and maintaining agile team success.
Possibly future research could investigate how CSCL tools can be
incorporated into online environments to facilitate regulation of
team processes and goal-attainment.
Research has identified that new graduates are often lacking
teamwork and communication skills [6-8], and perhaps we too
often assume students naturally employ these skills through
experience [5]. It is unknown why students in this class lacked the
adoption of some roles, particularly coordination, seeking and
reflective behaviours, however, understanding why students adopt
certain roles and not others warrants further exploration. If team
success is linked to teams who reflect on group processes and
employ strategies to improve team performance [15], then
assessment of teamwork activities needs to recognise these
behaviours as important and provide feedback to students about
improving these behaviours.
This research serves as the basis to continue the development of
evaluation mechanisms for assessing teamwork roles and skills in
collaborative activities. Teamwork is essential to the field of CS
and CS education can lead investigations in effective teamwork
practices, proactive teaching methods and ways of assessing
teamwork so that students may be provided with valuable
feedback that can improve their performance for teamwork
situations they will most likely encounter as a computer scientist.

7. REFERENCES
[1] Bender, L., et al. 2012. Social sensitivity correlations with

the effectiveness of team process performance: an empirical
study, in International Computing Education Research,
ACM: Auckland, New Zealand. p. 39-46.

[2] Robles, M. 2012. Executive perceptions of the top 10 soft
skills needed in today’s workplace. Business Communication
Quarterly, 2012.

[3] Archer, W. and Davison, J. 2008. Graduate employability:
what do employers think and want?, in Graduate
Employability: The Views of Employers, R. Brown and K.
Herrmann, Editors. 2008, The Council for Industry and
Higher Education: London, United Kingdom. p. 1- 18.

[4] Loftus, C., Thomas, L. and Zander, C. 2011. Can graduating
students design: revisited. in Technical Symposium on
Computer Science Education. Dallas, Texas: ACM.

[5] Lingard, R. and Barkataki, S. 2011. Teaching teamwork in
engineering and computer science. in Frontiers in Education
Conference. Rapid City, South Dakota: IEEE.

[6] Begel, A. and Simon, B. 2008. Struggles of new college
graduates in their first software development job, in SIGCSE

110

Technical Symposium on Computer Science Education.
ACM: Portland, USA. p. 226-230.

[7] Begel, A. and Simon, B. 2008. Novice software developers,
all over again, in Workshop on Computing Education
Research, ACM: Sydney, Australia. p. 3-14.

[8] Radermacher, A. and Walia, G. 2013. Gaps between industry
expectations and the abilities of graduates. in Technical
Symposium on Computer Science Education. Denver,
Colorado: ACM.

[9] Ruff, S. and Carter, M. 2009. Communication learning
outcomes from software engineering professionals: a basis
for teaching communication in the engineering curriculum.
in Frontiers in Education Conference. San Antonio: IEEE.

[10] El-Abbassy, A., Muawad, R. and Gaber, A. 2010. Evaluating
agile principles in CS Education. International Journal of
Computer Science and Network Security, 10(10): p. 19- 28.

[11] Hughes, R. and Jones, S. 2011. Developing and assessing
college student teamwork skills. New Directions for
Institutional Research, 2011. (149): p. 53-64.

[12] Hattie, J. and Timperley, H. 2007. The power of feedback.
Review of Educational Research, 77(1): p. 81- 112.

[13] Dickinson, T. and McIntyre, R. 2009. A conceptual
framework for teamwork measurement, in Team
Performance Assessment and Measurement: Theory,
Methods, and Applications, M. Bannick, E. Salas, and C.
Prince, (Eds). Lawrence Erlbaum Associates: Mawah, New
Jersey.

[14] Powell, A., Piccoli, G. and Ives, B. 2004. Virtual teams: a
review of current literature and directions for future
research. SIGMIS Database, 35(1): p. 6-36.

[15] ChanLin, L.-J. and K.-C. Chan, K.-C. 2010. Group learning
strategies for online course. Procedia - Social and Behavioral
Sciences, 2(2): p. 397-401.

[16] Beck, K., et al. 2001. Manifesto for agile software
development. Available from: http://agilemanifesto.org/.

[17] Moe, N., Dingsøyr, T. and Dybå, T. 2010. A teamwork model
for understanding an agile team: a case study of a Scrum
project. Information and Software Technology, 52(5): p.
480-491.

[18] Dingsoyr, T. and Dyba, T. 2012. Team effectiveness in
software development: human and cooperative aspects in
team effectiveness models and priorities for future studies. in
International Workshop on Cooperative and Human Aspects
of Software Engineering. Zurich, Switzerland: IEEE.

[19] Strijbos, J.-W., et al. 2005. Functional versus spontaneous
roles during CSCL, in Computer Support for Collaborative
Learning, International Society of the Learning Sciences:
Taipei, Taiwan. p. 647-656.

[20] Weinberg, G. 1971. The psychology of computer
programming. Computer Science Series, New York, United
States: Van Nostrand Reinhold Company.

[21] Belbin, M. 2010. Team roles at work. 2nd ed, Oxford, United
Kingdom: Elsevier Ltd.

[22] Salas, E., Sims, D. and Burke, C. 2005. Is there a "big five"
in teamwork? Small Group Research, 36(5): p. 555- 599.

[23] O'Neill, T., Goffin, R. and Gellatly, I. 2012. The knowledge,
skill, and ability requirements for teamwork: revisiting the
teamwork-KSA test's validity. International Journal of
Selection and Assessment, 20(1): p. 36-52.

[24] Moe, N., Dingsoyr, T and Dyba, T. 2009. Overcoming
barriers to self-management in software teams. Software,
IEEE, 26(6): p. 20-26.

[25] Hoda, R., Noble, J and Marshall, S. 2010. Organizing self-
organizing teams. in International Conference on Software
Engineering. Cape Towan, South Africa.

[26] Falkner, K., Falkner, N. and Vivian, R. 2013. Collaborative
learning and anxiety: a phenomenographic study of
collaborative learning activities. in Technical Symposium on
Computer Science Education. Denver, Colarado: ACM.

[27] Oakley, B., et al. 2007. Best practices involving teamwork in
the classroom: results from a survey of 6435 Engineering
student respondents. IEEE Transactions on Education, 50(3):
p. 266- 272.

[28] Race, P. 2001. A briefing on self, peer and group assessment,
Learning and Teaching Support Network Generic Centre:
York.

[29] DWEER. 2012. Employability skills framework: final report,
Department of Education, Employment and Workplace
Relations: Canberra, Australia.

[30] The University of Adelaide. 2012. University of Adelaide
Graduate Attributes, accessed 13 June 2013, Available from:
http://www.adelaide.edu.au/learning/strategy/gradattributes/.

[31] School of Computer Science. 2013. Graduate attributes.
accessed 4 June 2013, Available from:
http://cs.adelaide.edu.au/programs/compsci/attributes/.

[32] Falkner, K. and Falkner, N. 2012. Supporting and structuring
“Contributing Student Pedagogy” in computer science
curricula. Computer Science Education, 22(4): p. 413- 443.

[33] Creswell, J. 2013. Qualitative inquiry and research design:
choosing among five approaches. 3rd ed, Thousand Oaks,
California: SAGE Publications.

[34] Crowe, S., et al. 2011. The case study approach. BMC
Medical Research Methodology, 11(1): p. 100.

[35] Zanial, Z. 2007. Case study as a research method. Jurnal
Kemanusiaan, 9: p. 1- 6.

[36] Piazza. 2012. accessed 15th July 2012, Available from:
http://piazza.com/profs.

[37] Flanagan, J. 1954. The critical incident technique. Vol. 51,
American Psychological Association.

[38] Weinberger, A. and Fischer, F. 2006. A framework to analyze
argumentative knowledge construction in computer-
supported collaborative learning. Computers & Education,
46(1): p. 71-95.

[39] Hmelo-Silver, C. 2003. Analyzing collaborative knowledge
construction: multiple methods for integrated understanding.
Computers & Education, 41(4): p. 397-420.

[40] Hmelo-Silver, C., Chernobilsky, E. and Jordan, R. 2008.
Understanding collaborative learning processes in new
learning environments. Instructional Science, 36(5): p.409-
430.

[41] Zimmerman, B. 2008. Investigating self-regulation and
motivation: historical background, methodological
developments, and future prospects. American Educational
Research Journal, 45(1): p. 166-183.

[42] Zhang, Y. and Wildermuth, B. 2009. Qualitative analysis of
content, in Applications of Social Research Methods to
Questions in Information and Library Science, B.
Wildermuth (Ed), Libraries Unlimited: Westport. p. 308-319.

[43] Williams, K., Morgan, K. and Cameron, B. 2011. How do
students define their roles and responsibilities in online
learning group projects? Distance Education, 32(1): p.49-62.

[44] Krippendorff, K. 2004. Content analysis: an introduction to
its methodology. 2nd ed, Thousand Oaks, California: SAGE
Publications, Inc.

[45] Maxwell, J. 2010. Using numbers in qualitative research.
Qualitative Inquiry, 16(6): p. 475- 482.

111

A Case Study of the Development of CS Teaching
Assistants and Their Experiences with Team Teaching

Elizabeth Patitsas
University of Toronto Department of Computer Science

Toronto, Ontario, Canada
patitsas@cs.toronto.edu

ABSTRACT
Teaching assistants play a vital role in lab-based teaching at
large institutions, with a large impact on students’ success in
CS1. How do TAs develop as teachers? We extended exist-
ing models of teacher development for our context of teach-
ing CS labs in pairs. We found practice, teaching multiple
courses, mentoring, effective staff meetings, team teaching,
and feedback all contributed to TAs’ development. Team
teaching was a positive experience for our TAs, and allowed
them to learn from each other. While teaching labs, TAs
learnt mostly from partners who had more course-specific
experience, rather than general teaching experience.

Categories and Subject Descriptors
K.3.2 [Computers and Information Science Educa-
tion]: Pedagogy, education research

General Terms
Human factors

Keywords
Computer science education, teaching assistants, labs

1. INTRODUCTION
Consider the scene: a lab session has just ended. The TA

hangs around, to debrief the lab with another TA. While
mundane, for TAs this is a valuable source of professional
development – yet this is ill-studied. How do TAs hone their
teaching skills? Who and where do they learn from?

At the University of British Columbia (UBC), CS is taught
by 55 faculty and about 200 TAs. The TAs are responsible
for over half of the contact hours in first year CS, and, with
the lower student-to-teacher ratio, are positioned to have a
large impact on their students.

In this paper, we provide a case study of the experience
and instructional development of the TAs in CS at UBC. We
are interested in how to improve the teaching of our TAs –
how can we most effectively and efficiently support our TAs?

Note that this is a case study; while TAs are important to
how CS is taught at our institution, our heavy use of TAs
is not universal. We leave it to the reader to determine the
relevance of our context to their own.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
Koli Calling ’13, November 14 - 17 2013, Koli, Finland.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2482-3/13/11 ...$15.00.

1.1 The Importance of Teaching Assistants
We know from the small literature on lab TAs that their

teaching has an effect on student retention [1], and final
exam scores [2]. Indeed, students’ performance in TA-taught
labs have been found to be a predictor of success on final
exams in CS1 [3]. Studies in the general education literature
on teaching assistants tend to document issues of (lacking)
TA quality (e.g. [4]), often with little empirical guidance for
how to improve the matter.

Our use of TAs is typical of research-intensive North Amer-
ican institutions, where first-year students spend 30-50% of
classroom hours with TAs [5]. The use of undergraduate TAs
in teaching introductory programming labs is also common
to our type of institution [6, 7, 8], and has been found to
be effective in providing a positive learning environment [6],
particularly for women and other minorities. Effective use
of TAs has the potential to improve the retention of women
and minorities in CS, and reduce failure rates.

Despite TAs being highly used, they are not highly trained,
and “few faculty members set as a career goal the supervi-
sion of graduate teaching assistants” [9]. In our experience,
many faculty see TAs as poor at teaching; yet the evidence
is that TAs – like all other teachers – develop with expe-
rience, feedback, support, and positive socialization [9, 10,
11]. Existing literature on TAs comes from the humanities
and other fields without labs; as such, we must draw on
those studies, and general teaching development, to inform
our understanding of TA training and development.

1.2 Teacher Development
How do teachers develop and change professionally? Guskey

created a model in 1986 of teacher change; in 2002 he repub-
lished his model with almost twenty years of empirical evi-
dence for the model [12]. Guskey found that the näıve model
that “knowledge → change in attitudes/beliefs → change in
behaviour” is false [13]: change in attitudes/beliefs is un-
likely to happen from solely informing people about new
teaching techniques. Instead, change in attitudes and be-
liefs comes from a change in behaviour. Guskey’s simpli-
fied model looks as such [12]: professional development →
change in teachers’ classroom practices→ change in student
learning outcomes → change in teachers’ beliefs/attitudes

As we see here, the change in beliefs comes from a change
in behaviour (the classroom practices). So what prompts
teachers to change their classroom practices? Teachers are
highly motivated to improve their practice – but are wary
that changing their approach could potentially result in less
student learning [12]. Teachers who have had success chang-
ing their practices in the past are more confident about fur-
ther changing their practices [12]. For effective professional
development, teachers need to receive regular feedback, and
receive continued support that is understanding of the fact
that change is gradual and difficult for teachers [12]. It is
hence not surprising that coaching approaches to teaching

112

development are staggeringly more successful than isolated,
one-time tutorials on pedagogy [14].

Kugel, in his paper on how professors develop as teachers
[15], observed that the teaching abilities of professors de-
velops in stages. He presented three stages of development:

1. Focus on self and their own role in the classroom
2. Focus on subject material
3. Focus on student and their ability to absorb and use

what they have been taught
In his paper, he breaks the third stage into three: a focus on
students’ ability to absorb knowledge, a focus on students’
ability to use what they have been taught, and a focus on
students’ ability to learn independently [15]. These three
sub-stages are empirically difficult to separate and for the
purpose of our paper, we will be treating them as one stage.

Kugel also presents how professors transition between these
three stages. The first transition happens once the professors
develop confidence that they are not talking too quickly or
quietly, or covering too much/little material, etc – and from
there, begin to worry that they are not doing a good enough
job of teaching the material. In the second stage, professors
increase the quantity of what they teach as they develop en-
thusiasm for the material – and then begin to wonder why
students fail to understand all the new material, blaming
this on the students. In the second transition, professors
begin to focus on the students themselves.

Kugel’s transitions are consistent with the research that
behaviour change leads to attitudinal change – but his de-
scribed transitions are simplistic and focus only on the pro-
fessor. What external forces act and help the teacher to
develop? We know that knowledge transfer among teachers
is “pull transfer” – teachers pull on their colleagues for aid
when they see a problem – rather than “push transfer” [16].

Sprague [9] and Staton [10] describe two external forces
that affect TA development: supervision, and socialization.
Sprague has a three-stage model of TA development that
parallels Kugel’s model. She focuses on how TAs should be
differentially supervised depending on their stage of devel-
opment; it should be noted her model comes from an arts
background, with no labs.

1. Senior learner – a new TA, who is making the transi-
tion from being a student to a teacher (focus on self)

2. Colleague in training – “as TAs settle into the new
role, they become more concerned about their lack of
teaching skills” [9]; it is at this stage that they begin
to develop a teaching style and focus on delivering the
content (focus on subject)

3. Junior colleague – “their primary concerns involve dis-
covering ways to help students learn ... [they] are able
to transcend, combine, and create systems of instruc-
tion ... they are just the people we would all like to
hire as assistant professors” [9] (focus on self)

Sprague argues for“progressive delegation”of tasks to TAs
– giving the junior colleagues more responsibilities (such as
running tutorials), and the senior learners fewer ones (grad-
ing papers). Importantly, she notes that the supervision of
these TAs should also change: senior learners need a manger;
colleagues in training need a role model; and junior col-
leagues need a mentor [9]. TAs at all stages can benefit
highly from feedback and effective supervision – and from
relationships with other TAs. Senior learners need a sup-
port system of fellow TAs/co-learners; colleagues in training
need the fellow TAs as resources; the junior colleagues act
as mentors and role models to the other TAs [9].

Per Staton, “new friendships are a vital component of the
TA socialization experience. In fact, having a group of peo-
ple with whom one can share concerns, fears, triumphs, and
challenges ... can make a considerable difference in later

success as a faculty member.” [10] For new TAs, it is vi-
tal to their development to have friendships with new TAs
and senior TAs as role models. TAs are also affected by
the culture of their department: micro-messages from fellow
students/faculty about the importance of teaching make a
large difference [10].

Insufficient social support for TAs is a common issue [5,
4]: TAs tend to feel “overworked, underpaid, and unappre-
ciated” [5], and faculty are unmotivated to focus on TA su-
pervision [9]. A positive social environment for TAs makes
a large difference in their motivation as teachers, and their
quality of teaching as a result [5].

1.3 Social learning and knowledge transfer
Social learning, also known as observational learning, oc-

curs through observing, retaining and replicating new be-
haviours seen by others. It is one form in which knowledge
transfer (distribution of experiential knowledge) may occur
[17]. Szulanski identifies three factors in knowledge trans-
fer: the ability of the recipient to identify, value, and apply
new knowledge; the depth of knowledge of the source and
their usefulness as a role model; and the ease of communi-
cation and intimacy of the relationship [17]. As such, we
would expect more experienced TAs and course instructors
to be more useful sources of knowledge transfer – and more
transfer to happen when TAs have more social support.

2. CONTEXT
At the time of this study, UBC CS TAs teach labs in pairs.

Lab sections typically contain 20-30 students, and last 2-3
hours depending on the course.

There are 60 undergraduate TAships every year, and 150
graduate TAships. Graduate students are mostly first-year
MSc students hired as part of their guaranteed funding pack-
age; more experienced graduate students can apply for addi-
tional TAships. These experienced graduate students, and
the undergraduates, are hired selectively.

In this study we are focusing on TAs who teach first and
second year CS. These courses are large; they have hundreds
of students, 1-4 instructors, and dozens of TAs. Typically
these courses have weekly staff meetings; first-year courses
will often have TAs perform the labs in advance during these
staff meetings. The organization of the staff meetings varies
depending on the lead instructor for the course.

New TAs are strongly encouraged to attend an initial
training session. While TAs are told it is obligatory, in prac-
tice, TAs frequently skip the session without recourse. No
further formal TA training is available to TAs.

The convention in TA assignment is to place TAs who
have been hired previously onto the course they had last
taught, in the hope of maximizing the experience on a given
course. As a result, the vast majority of two-term TAs have
only taught one course. More experienced, sought-after TAs
have more leverage to request shifting to new courses.

3. METHODS
We held hour-long, semi-structured interviews with nine

TAs, using the data to refine Kugel and Spragues’ models of
development to a model of TA development in our context.

TAs were sampled to yield a maximal spread of experi-
ence. We interviewed two first-time TAs, four second-time
TAs, two fourth-time TAs, and +6-time TAs. Given the high
turnover of TAs in our department, finding TAs with more
than three terms of experience is difficult; we had hoped to
have a second +6-time TA but were unsuccessful to find one
that satisfied our constraint of only interviewing TAs that
the author had not worked with1. We list our participants
in Table 1; names have been changed.

1This proved to be a substantial constraint: the author had
been a prominent TA for nine terms.

113

Participant Terms as a TA Courses TAed
Alice 1 1
Arthur 1 1
Bob 2 1
Ben 2 1
Bill 2 1
Charlie 2* 1*
David 4 3
Daniel 4 3
Evan 6 3

Table 1: Summary of participants by experience;
Charlie has significant additional non-CS teaching
experience as a sports coach

3.1 Interviews
The interviews began with a grand-tour question2, an

open ended question which allows the interviewee to set the
direction of the interview [18]. We would ask the TAs to list
their experience, including all the different duties they had
had over the years. From there, example questions we asked
were (in typical order):

• Why did you become a TA?

• What do you see your role as being as a TA?

• What is your favourite part of being a TA?

• What is your least favourite part of being a TA?

• Who has influenced you as a TA?

• How were you trained for your job?

• What do you do to prepare for the labs?

• Have you sought advice from others about TAing?

• How many lab sections have you taught? Could you
describe each one?

• Who did you teach those lab sections with? What was
your experience of working with them? What was your
first impression of them?

• What do you think of your own teaching ability?

• Has your teaching style or ability changed since you
began? How so?

• Overall, how would you characterize your experience
as a TA?

3.2 Qualitative analysis
The interview analysis happened in multiple stages, using

an Affinity Diagram [19]. Our goal at this point was to
examine these research questions:

RQ1. How does the TA experience change with develop-
ment? (section 4)

RQ2. What influenced our participants to transition to new
stages, and promote their development? (section 5)

First, interviews were transcribed. Then, each interview was
coded: each new theme, idea, or issue was summarized on a
post-it note. Post-it notes were colour-coded by the partici-
pant and the amount of experience they have. Once all the
initial codes were put on post-it notes (approximately 300),
the post-it notes were iteratively grouped by theme, until
there were approximately 25 groups.

Then, for each thematic group, we took the post-it notes
in the group and sorted them by how experienced the TA
was: Alice/Arthur, then Bob/Ben/Bill, then Charlie, then
David/Daniel, then Evan. We decided that since Charlie

2Typically, “What has your experience been like as a TA?”
Alternate wordings were used.

has more teaching experience than Bob, Ben and Bill that
we would analyze him as a separate category.

We split thematic groups into two categories: those where
a TA’s experience of that theme changed with how experi-
enced they were (e.g. asserting authority was hard for Al-
ice/Arthur but easy for Evan), and those that did not (all
TAs looked up to course instructors).

Using the themes which changed with experience, we looked
at when the changes happened, to identify when stages of
development begin/end; and fitting to Kugel’s and Sprague’s
stages in a data-driven approach. Once we had fit our par-
ticipants to those three-stage models, we looked at what
factors influenced our participants’ transitions.

3.3 Additional analysis
As one of the factors which emerged as influential was

team teaching in the lab, and there was no existing literature
on how TAs teach in teams, we focused more on this. We
then added these questions:

RQ3. How do TAs work together in pairs? (section 6)

RQ4. How does knowledge transfer flow? (section 7)

We performed 8 hours of observational study of TAs in
their labs, observing how pairs worked together (described
in [20]). After these observations, we went back to the inter-
view scripts, and re-coded participants’ answers about how
they work with their partners and their experiences with
their partners. For these two research questions, the unit of
analysis was the pair. From interviews, we had descriptions
of 23 pairs; we also had observed 4 pairs in the lab.

4. WHAT CHANGES WITH EXPERIENCE
4.1 Confidence

More experienced TAs described their own teaching abil-
ity more confidently, particularly in terms of asserting their
authority and forcing the students to work. As the most ex-
perienced participant noted, “I think I’ve gotten more stern
[over the years]... now I’ll enforce a sort of ‘put in the ef-
fort’ to the students. I have a policy of never giving students
‘The Answer’, and many students don’t like that; I can tell
students aren’t happy about it... at this stage, it gets frus-
trating, not holding students’ hands as much as I used to.
I’m not as popular, but always respected.” (Evan)

The TAs with four or more terms of experience were com-
fortable asking students to, as one put it, “eat their spinach”.
As Evan describes, “I may not be popular, but I always feel
respected”. The newer TAs were less comfortable with this.
Alice, a first-time TA, described her teaching ability as “hit
or miss”; and a second-time TA rated his ability in the class-
room as “better than having no TA there.” (Bob)

The aspect of increasing self-confidence manifests itself
elsewhere, such as in interacting with students. Overall,
experienced TAs considered themselves to do a better job of
teaching, particularly compared to when they began.

4.1.1 Regular Preparation
We saw three stages of TA preparation based on experi-

ence: diligent but potentially ineffective preparation, over-
confidence, and then effective preparation.

Alice, Arthur, Bill, Ben and Bob all described diligently
preparing – looking over labs, but not necessarily doing the
labs themselves. They would identify where they expected
students to have difficulty. Not having much experience
teaching these labs, this was based mostly on their own ex-
periences as students.

For Charlie, David and Daniel, the TAs who had taught
more than one course, the days of worrying about lab prepa-
ration were behind them. Instead, they would describe times

114

where they neglected to prepare for their labs, assuming
they could “wing it” based on previous experience. With
their increased confidence, their jobs became easy: “it was
so simple it [preparation] didn’t really matter at all” (Char-
lie) but later noted that “I had a problem with preparing
for [the labs], out of hubris for having done the labs... one
time where I was doing something completely wrong and [my
partner] caught me... the preparedness thing was something
I could have worked on... [In time] I tried to detach myself
from my ego.” (Charlie)

Teaching a course multiple times also would make it harder
to motivate onesself to prepare: “when you’ve taught the ma-
terial a few times, and you remember that you’ve taught it,
you have to bring yourself back to the point where you didn’t
know it, and you have to reset it.” (David)

Evan described himself as reliably preparing. His prepa-
ration was less than the first-time TAs, but more targeted;
he could identify when he needed preparation, and when he
did not. Noticeably, only Evan, David and Daniel mentioned
talking to fellow TAs outside of lab as a source of prepara-
tion – for the more junior TAs, preparation was generally a
solo experience.

4.2 Technique

4.2.1 Approach and Focus
When first-time TAs assessed their own teaching ability,

they would describe their approaches to answering ques-
tions. One described her approach as: “I try to simplify
it, try to break it into steps. Sometimes I’m leading the per-
son to the answer and sometimes I think I’m dragging them
to the answer ... If they don’t get it, I try to take them back
to where they last understood, and take them from there. It’s
hit and miss.” (Alice)

The second-time TAs would also focus on answering ques-
tions, but described their ability to do so as successful, and
focused on the content of the questions – whether they could
answer a question on HTML, or how to use the debugger in
Eclipse. For both the first and second-time TAs, their eval-
uation of themselves was largely based on how well-received
they were by the students. The first-time TAs were clearly
at Kugel’s “focus on self” stage, but Kugel’s model doesn’t
quite fit here for the second stage. The second-time TAs
were comfortable with their ability to answer questions, and
focused on content (focus on subject) – but evaluated them-
selves based on how students perceived them (focus on self).
Here is where Kugel’s model doesn’t quite apply to TAs –
we think it is because they do not determine the subject ma-
terial, and have less responsibility for it, and so it is harder
for them to focus on only the material.

Charlie, David, Daniel and Evan also described using mul-
tiple ways of reaching their students. They would lecture the
class, or target students and “guide them along” rather than
waiting for those students to ask questions. These four TAs
described multiple heuristics in teaching students, shifting
between them as appropriate. They were the only ones de-
scribing a Socratic approach – “I don’t give them answers,
I just get them to find answers.” (Daniel) They described
their approaches as focusing on equipping students to learn
independently, and would evaluate themselves based on their
impression of student learning. By Kugel’s model, these four
TAs are at the “focus on student” stage.

4.2.2 Communication skills
The more junior TAs (Alice, Arthur, Bill, Bob, Ben) also

tended to discuss their communication ability when describ-
ing their teaching ability. For example: “one person wrote
[in my evaluations that] I should take some public speaking
lessons, and maybe I should, and it’s a bit hard for me in
front of the class but it’s easier one on one. There were also

a few cases where I might have misled someone.” (Bob) –
And: “[My teaching ability has] room for improvement... I
have to make a mental effort to slow down when speaking to
students” (Arthur).

In contrast, the more senior TAs (Charlie, David, Daniel,
Evan) did not mention their communication ability when as-
sessing themselves as teachers. They did not note difficulty
in communicating with students, although note was made of
improving over time: “[Teaching is] a great experience... it’s
an experience for growth. You have to know things to quite a
high level unlike [teaching sports], and you’re developing it at
the same time as you’re developing the soft skills.” (Charlie)

4.3 Interactions with Students
4.3.1 Relationship to Students

All participants noted that their favourite part of their
work was helping their students, and guiding them to so-
called “Eureka moments”.

For junior TAs, interacting with students in a friendly
manner was important. They were also eager to have more
interactions: “what is important is that I get more inter-
action with students.” (Ben) And as another put it, “[My
favourite part about being a TA is] I get to interact with the
same group of students, so you develop a friendship sort of
thing. It’s fun knowing they can turn to me when they need
help in lab.” (Alice)

For the more senior TAs, interacting with students in a
mentorship style was more important. One wanted “to con-
vey that CS is pretty cool, and when students get it, that’s
a pretty good feeling” (Evan). Another said, “I don’t chat
with the students or [my partner] socially [while teaching]”
(Daniel) and that during lulls in the lab, he would instead
focus on the struggling students: “[it] takes out a lot of my
time to try and help them.” (Daniel)

The difference between the mentorship approach and the
friend-making approach could sometimes cause tension be-
tween TAs of different stages. For example, in describing
his less experienced partner, Charlie described that “[The
partner] would spend more time talking with the kids, talk-
ing about random stuff ... there was a couple [of students]
that he really liked to chat with. I would also chat with the
students, but not as much as he did. As a TA you want to
be friendly and nice, but you don’t want to have a 20 minute
discussion about your favourite video game.” (Charlie)

4.3.2 Authority
Asserting authority was a salient problem for the first-

time TAs, particularly given their young age: “As a first
year [myself], it’s weird interacting with students in first
year who are in classes with me, and with older students
... My position as an authority is a bit [pauses] I have to be
a bit more careful in what I do.” (Arthur)

Arthur and Alice’s descriptions of their unclear authority
in the lab was very much consistent with Sprague’s descrip-
tion of the “senior learner”: “they tend to identify more with
the students in their classes than with the instructors they
are assisting ... this is a troubling and confusing transition[:]
Can I really do this? Do I look like a teacher?” [9]

Bob, Bill and Ben were more comfortable in their roles;
they could assert authority when they had to, and were gen-
erally unworried about whether they were seen as authorities
to their students. And for Charlie, David, Daniel and Evan,
this was not an issue at all.

Related to this is how TAs would respond to questions
where they did not know the answer. More senior TAs gen-
erally responded by calling over their partner to see if they
knew the answer – regardless of how experienced their part-
ner may be. As one put it, “If there’s something I’m not
confident on, I’ll refer to [my partner] – we want to get the

115

best answer possible [for our students].” (Daniel) Junior TAs
were less likely to defer to their partner. They were less likely
to admit that they did not know something, worrying that
they would look incompetent. For example, Ben noted that
if a student asked him too advanced a problem, he would
brush it off rather than ask his partner.

4.4 Support
4.4.1 Teamwork

First-time TAs tended to ignore their partners, “too busy”
while teaching to check in with their partners or observe
their work. Second-time TAs, however, tended to interact
directly with their partners, such as in socializing with them
or intentionally observing how they answered questions. Ju-
nior TAs were immediately trusting of their partners; as one
noted, “It was kind of implicit – we never thought of it. It
was a given. We were both in the same section, we were both
TAs. What was there not to trust about?” (Ben)

For more senior participants, the trust was to be earned.
Some would report experiences working with unprepared
TAs where they had to perform “damage control”; these ex-
periences tended to stop TAs from automatically trusting
their partners. The senior TAs would take more of a super-
visory role when paired with an inexperienced TA, taking
them under their wing. Evan describes a partner: “[She]
was frequently unprepared as a TA [last term]; this impres-
sion [of her] has not changed. [This term] She is more com-
fortable with the material now, can think on her feet more.
... I trust her now more since she’s more familiar with the
material... not so much when first TAing with her, wasn’t
sure she’d always give good advice to students.” (Evan)

The senior participants would take the initiative to com-
municate with their partners about the lab, such as in dis-
cussing the lab beforehand, or debriefing together afterwards.
For one, the process was: “[We] would huddle up and talk the
lab over... same thing with [a partner in another section],
huddle up at the beginning to talk about what the lab is about
and who does the marking” (Daniel). Another TA used the
lulls for this: “when there’s a slow period, and nobody asks
a question, then we’ll talk until somebody asks a question.
It was actually pretty neat to see how he [the partner] was
doing the labs.” (David)

4.4.2 Getting Advice and Encouragement
Beyond their partners, all participants sought advice and

support for their work, and found mentorship important in
their growth. Participants of all stages looked to their course
instructors for mentorship.

Novices also went to external sources: friends, family, and
past TAs were noted. The senior TAs noted going instead
to more experienced coworkers and their research advisors.

When asked about their favourite part about teaching, the
more experienced TAs noted collaborating with the other
staff as a favourite part about teaching. One, for instance,
noted that staff meetings were one of his favourite things,
and that “I really, really enjoy working with [two course in-
structors]. Our staff meetings are awesome.” (Charlie) This
was not noted by the junior TAs.

Outside the labs, TAs of all stages would also seek advice
from other, experienced TAs. “At one point I asked another
TA [Daniel] about another lab. I was wondering how they
handled people who couldn’t keep up. [And how to handle a
difficult student.] And I did ask some other TAs to ask what
their experiences were like, and I could use that to generate
a strategy to work with him.” (David)

Similarly, Arthur went to his TA from when he was a
student (Charlie) for advice about students not finishing labs
on time, and was reassured that “it’s not your fault they
didn’t all finish on time”.

4.5 Perception of the Job
4.5.1 Least Favourite Parts about Teaching

While no TA enjoyed seeing their students fail, nor fail
to complete on time, nor having students who didn’t put in
the effort or keep up with the material, the extent to which
these things distressed the TAs differed between the junior
TAs and senior TAs.

Alice, Arthur, Bill, Ben and Bob found these issues highly
distressing, listing them as their least favourite parts about
teaching. By contrast, the senior TAs described these mat-
ters with a large degree of acceptance. Indeed, on the matter
of students not finishing on time, Alex noted a “too bad, so
sad” approach; he would cut labs off precisely on time to be
fair to all the students.

Senior TAs listed a number of different things in response
to“what is your least favourite part about teaching?”. These
were: 8AM staff meetings, bad answer keys, issues with
recording grades, and managing grades with Blackboard; in
other words, logistical issues that differ from term to term.
Senior TAs tended to focus on complaining about matters
they felt could be changed — such as rescheduling staff meet-
ings, or changing the course management software.

4.5.2 Triage
Senior TAs demonstrated more incisiveness in how they

allotted their time and effort as TAs. As Evan noted, “in my
first term, I would not have thought twice about spending 40
minutes with a student that hasn’t put in the effort...”

Junior TAs did not note this discrimination: “I’d often
stay up to an hour and half [overtime]... The labs were tiring
since they were 3 hours, and most students took half that
time. Some ‘exceptional cases’ took longer, and I’d wind up
working overtime. I’d spend a lot of time working on false
problems: ambiguous instructions, lab machine issues, so on
– I’d be wasting a lot of time on these.” (Ben)

When it came to the ‘exceptional cases’ of students who
were very far behind, the senior TAs described a form of
triage in rationing their time, and learning to move on for
students that “can’t be helped”. None of the junior TAs
mentioned passing over these students, instead devoting as
much time as they could to them.

Junior TAs struggled with overexerting themselves, like
that TA who would be spending extra hours in the lab help-
ing students. In contrast, one senior TA would “not stick
around after the lab; it reduces cross-pollination between sec-
tions and is more fair to the class [as a whole]... I get told
I come off as unfriendly, but I’m working on it... when stu-
dents come in late I won’t repeat earlier explanations, to
enforce timeliness.” (Daniel)

4.5.3 Motivation and Role as a TA
When asked why they became TAs, the chance to help

others always came up. Junior TAs, however, tended to
note benefits to themselves: the pay, getting job experience,
practice at communicating, and consolidating their knowl-
edge of the material. Senior TAs tended to focus more on
philosophical reasons — to “pay it forward”, to make up for
“the bar being set so low” in terms of TA quality, and to
replicate the effect that an influential TA had on them as a
young student. It is plausible that the TAs who teach for
these reasons are more apt to gain more experience.

When questioned about what they see the role of a TA as
being, senior TAs tended to describe the role first as that
of a teacher and role model, and secondly as that of an
assistant to the course as a whole, while junior TAs tended to
describe the role primarily as an assistant to the instructor,
reinforcing their work in lecture.

As one first-time TA put it, “We all want to get these kids
through the lab and get them through as best as we can. I

116

see my job as clarifying what students are having difficulty
with, reinforcing what they’re learning in lecture. By doing
things, they learn it better; helping them see why they’d do
something.” (Arthur)

Being a role model was a theme in the senior TAs’ answers;
“We are on the front lines, we are the ones the students see;
they make their impressions based on us. And it’s our task to
make sure they learn the stuff, and I’m willing to spend extra
time to make sure that’s possible. And on the flip side, we
also have to make sure things run smoothly, so the professors
don’t have stuff to worry about.” (David)

5. FACTORS PROMOTING GROWTH

5.1 Practice
For the Sr. Learners, teaching gets less “intimidating” as

time proceeds and they gain more practice at it: “[Teaching]
was really scary at first... it is about people skills... but not
as hard as I initially thought it would be ... I started off being
very math-heavy; now I’m trying to draw from a wider range
of examples and different ways of approaching the problem.”
(Arthur) and “over the course of the term, the labs became
less intimidating” (Bill)

One Jr. Colleague described that “this term I’m much
more comfortable” (Daniel), referring to his fourth term. In
contrast: “[For my first experience] I was nervous... I ex-
pected it to be harder, and eased into it after a few lab sec-
tions, and y’know, developed confidence about it, like ‘sure,
I know this stuff’. It wasn’t too bad. [The term after,] I
switched to [a second course] to get some variety and to work
for [a particular instructor].” (Daniel)

In addition to the day-by-day practice, TAs also used their
term-by-term experience. For example: “[I] made a point of
learning students’ names in the first week this term ... it felt
awful handing students the marksheet last term [when I did
not know their names], especially when most of them knew
my name.” (Bill)

5.2 Teaching a Different Course
While Sr. Learners described their first terms as TAs as

“intimidating”, the more senior TAs described switching to
a second course as their most challenging experience, and
that this was harder than than beginning as a TA.

Indeed, the senior TAs all noted the experience of moving
to a different course as pivotal in their development; their
first and third courses were less discussed in this regard.
Indeed, having taught multiple courses appears to be the
distinguishing factor between the Colleagues in Training and
the Jr. Colleagues.

As one Jr. Colleague notes: “[My first experience as a TA]
was fun. Felt prepared, since I’d done well at [the material]
at both the grad and undergrad level ... the next one I TAed
was CSXXX; It was a different experience. [...] since the
course material was new to me. I had to learn the stuff in
advance to be able to teach it right back.” (David)

For another: “[When I first TAed the second course] I was
nervous, especially around [the course instructor] ... It took
me a term to get used to [that course], there is a special way
of doing things [compared to his first course]..” (Evan).

The process of having to adapt to a new way of teaching,
and new material, made the Jr. Colleagues reflect on their
teaching and generalize their skills to the new courses. It
also counteracted the “boredom effect” of teaching the same
material repeatedly, and encouraged David and Daniel to
prepare for the new material (cf. subsubsection 4.1.1).

For the Colleagues in Training there was a desire to try a
second course. “I was getting tired of the course [by the time
I applied for a second TAship]... I plan on continuing to TA
for as long as possible ... Hopefully not [the course I’m on].

I don’t want to be in the same course for too long; I want
breadth of experience. Actually, I listed in my preferences
everything but [the course I’m on] for this term.” (Ben)

The Sr. Learners, in contrast, reported not feeling“ready”
to try another course: “I don’t think I’d be qualified to teach
anything else.” (Alice)

5.3 Mentoring
Our participants reported mentoring as being helpful in

their growth – and for Evan, being a mentor helped him.
Mentoring could come from course instructors, research su-
pervisors, or more experienced TAs.

Indeed, numerous study participants reported going to
Evan for advice, or listening to his remarks in staff meet-
ings. He was also aware of being a role model: “there is a
‘social strata’ in [this] course, once you’ve done it once be-
fore you’re in [the ‘old folks’] crowd. Among that crowd, I
think I’m the only one whose done the course for more than
one term... Now, TAs will ask me questions and expect a
definite answer. I’ll try to be hands off with the ‘new folks’,
I don’t want to give them the impression that I think they
can’t do it.” (Evan)

For the graduate student participants, research supervi-
sors were noted as role models, among others: “I have been
influenced by many teachers: [my research supervisor] has
been especially influential; I also had another mentor... she
has passed away... she helped me deal with many things that
come to you at once, and make all the students feel acknowl-
edged and not feeling ignored. And I’m learning a lot from
[the two course instructors] and I learnt a lot from [one of
the course instructors] by watching him and how he handles
questions.” (David)

5.4 Working with other TAs
5.4.1 Staff meetings

Staff meetings form Sr. Learners’ primary resource for
advice on labs, and were noted as very valuable to them.
These TAs tended not to actively contribute to the meetings,
but listened carefully to the discussions between the other
TAs and the instructors.

Arthur described their training for the job as: “There were
pointers on how to run the lab [at the staff meetings, which]
came from the other TAs as a general discussion... At the
meeting, the main contributors to the warnings [about pit-
falls] include Daniel and David, but everybody tends to pitch
in. [The course instructor] talks about the labs [also.]”

The other Novice adds: “I don’t surround myself with
other TAs [off the job] ... so I don’t really get influenced
by them... At the meetings, [the course instructors] will give
tips and I’ll take notes and try to use them ... One time
I brought up that my students were working together in lab
and one student was just copying. I brought it up in one of
our TA meetings and they gave me some helpful pointers...
mostly when we have TA meetings I listen to other issues
that are brought up, so it’s okay in that sense. ” (Alice)

Hearing their coworkers talk about teaching appears to
support Sr. Learners in reflecting about their teaching. Al-
ice noted: “[Since the start of term] I’ve become more self-
aware. At the beginning, I was more telling them the answer,
now it’s more I’m telling things to get them towards to the
answer. I ask them questions to get them engaged... I’ve
become more aware about how I approach things.” (Alice)

5.4.2 Team teaching
For Colleagues in Training and Jr. Colleagues, team teach-

ing was noted as useful for gaining tricks, examples, and
advice on how to teach the labs. For Ben, talking to their
partner was enjoyable and motivated preparing for the labs:
“[My partner and I] would let the students go crazy with the

117

labs and we would sit at the front.” They’d try out things on
their computers. “I would do little projects, and we’d share.
It was fun, talking to [my partner] in the lab. We’d be talk-
ing about things outside the students’ league, like assembly
programming. But we would also be doing stuff related to
the lab. And then we would try to do the lab, too.” (Ben)

Bob found that working with a much more experienced
partner in one of his sections helped in learning the labs: “I
thought that [one of my partners last term was] pretty good.
I would put myself at the same level [of teaching ability] as
him had I not the lab with [a more experienced partner that
term] and access to what she was doing. I could see how
she would explain things; I could correct myself more often.
Helpful in filling gaps in my knowledge.”

Evan, in reflecting on an earlier term as a TA, recalled “It
was nice to have [the other TA] around to use as a gauge of
whether [our course instructor] was being stern or upset; I
was nervous the first time I was on [that course], especially
around [that instructor].” (Evan)

As we noted previously, Sr. Learners differed from the
other participants in how little they reported interacting
with their partners in the lab. Indeed, Arthur, who hadn’t
reported talking to his partners much, noted during the in-
terview’s debrief that “in doing the interview, I’m reflecting
on what I’m doing and not doing in the lab... I think I should
start talking to the other TAs more.” (Arthur)

5.5 Feedback
Sr. Learners reported being hungry for feedback, finding

it useful for their growth. We have already noted mentoring
– one source of feedback. But for TAs at our institution
the only formal performance feedback TAs receive is from
end-of-term student evaluations.

A number of participants noted the qualitative feedback
they had received from students. For example, “I would
have my laptop out and not be disturbed for an hour, hour
and half ... [My TA] evaluations described me as ignoring
[the students], that they didn’t feel comfortable interrupting
[me], so I changed this in later terms.” (Daniel)

Rarely, instructors would give performance feedback in
staff meetings, such as “you are all doing a great job”. TAs
described this as useful, particularly for being motivated
midway through the term. One-on-one feedback from in-
structors was described as particularly powerful.

As students were the main (if only) source of performance
evaluations, Sr. Learners tended to focus on pleasing their
students. They worried that poor evaluations would lead to
them not being rehired, and were intimidated to take a firm
hand with their students as a result. Jr. Colleagues did not
note this intimidation; after being rehired numerous times
they had confidence in their job security.

6. HOW TAS WORK TOGETHER
As team teaching influenced TAs’ development, and is un-

studied in the literature – how do TAs work together?
The TAs responded unanimously that working with an-

other TA in the labs was a positive experience; as one put
it, “the two TA thing was perfect” (Charlie). None of the
TAs would have preferred to work solo, and reception to
adding a third TA to a lab section was generally lukewarm:
“adding a third TA would make it harder to coordinate ...
there might be more conflict.”

Only Daniel thought that adding a third TA may be bet-
ter: “I’ve always wondered how it would go with three TAs
instead of two; it would reduce the wait time for students,
which is their biggest complaint. A third TA would give them
time to sit down and help them out.” But as Bob put it:
“That size lab felt pretty hectic... we were just trying to keep
track of everyone, so I think two is kind of ideal.”

The student-to-TA ratio (25 students to 2 TAs) was con-
sistently described as manageable, except in CS1 – TAs
noted the relative neediness of students in this course com-
pared to other classes meant that the student-to-TA ratio
was slightly too high. The CS1 labs also require students
to show intermediate work to TAs at specified “checkpoints”
and to wait until they have TA feedback before proceed-
ing. More experienced TAs on the course would ignore the
instructor’s instructions about the checkpoints and let stu-
dents work ahead after finishing checkpoints, so that there
would not be bottlenecks in questions.

6.1 Advantages of Team Teaching
Our participants noted four benefits of team teaching:

Division of labour: “makes the lab more efficient”

Security: “It’s nice to have somebody covering your back”

Teamwork: having another TA to socialize with during
lulls, or “bounce ideas off of”

Diversity: “sometimes you just can’t see something and you
need another view”; ”we could combine our knowledge”

For less experienced TAs, the last point was particularly
salient: if they did not know how to help a student, their
partner would be there to help them out – when their part-
ner “has their back” it is making up for their own lack of
knowledge or experience – and would give them a chance to
fill those gaps, as we see in subsubsection 7.1.2.

For experienced TAs, a partner who “has their back” often
meant they had more freedom in how they spent their time
in lab – “More TAs mean you can get to a student faster, or
you can spend more time with a student and somebody else
takes up the slack.”

6.2 Conflict in the Lab
Overwhelmingly, TAs had positive things to say about

their partners and the experience of teaching in teams. How-
ever, conflict could arise between partners.

The most frequent negative comment about their partners
was that they had been blunt or insensitive to their students,
and all came from the undergraduate TAs:

• “I think he would have been great for fourth year, but
first years are a bit fragile and he should smile more.”
(Charlie)
• “he could be insensitive... very straightforward about

what he tells students about their mistakes. Won’t
sugar coat it. Students have told me they found him
insensitive...” (Ben)

Experienced TAs were most concerned about their part-
ners’ preparation and professionalism.

As for direct conflict between partners in the lab, the only
issues that our participants noted as contentious have been
(regardless of experience level):

Part marks: whether students were being marked too le-
niently or harshly – for many CS TAs, having thrived
in a culture of yes-or-no marking, any subjectivity in
marking schemes is uncomfortable, and TAs get little
guidance on the matter.

Punctuality: when their partner was coming consistently
late, or very late

6.3 Approaches to Teamwork
TAs spent most of their time in the lab working indepen-

dently. Generally, TAs would brief with their partner at
the beginning of the section and debrief at the end, only
checking in with each other if issues arose. In labs with lulls
in student questions, TAs would also talk to their partners
during these breaks.

118

About half of the TA pairs went further than this, by
either actively observing their partner, talking strategies in
the labs, or socializing. As some examples:

• “I would see how [my partner] would explain things ...
we spoke more about the issues that were popping up
and how we could resolve them.”
• “[My partner] would sit at the back [and I at the front]

and whenever one of us would see a question, the clos-
est would go over and sort it out... at the beginning of
lab we would huddle up and talk the lab over... what
the lab is about and who does the marking.”
• “It was cool to get to know him a bit more... [work-

ing together] is good. He’s really enthusiastic about his
stuff. He knows how to help most stuff, and when he
doesn’t, I’ve been able to help him out.”
• “There are these two girls who sit in the front row who

don’t talk to [my partner and I]... we talk about this
and what we can do about it.”
• “[My partner and I] would do the labs together [as

preparation so] that we wouldn’t look so clumsy in front
of the students.”
• “Our styles complement each other; I explain things

theoretically, and she explains things concretely.”

Generally, TAs would not get to spend much time talking
to their partners – for the majority of sections the TAs were
“going from one question to another” for at least the first
half, and last quarter of the lab – but the brief interactions
were described as very useful. We categorized the types of
reported in-lab discussions between TAs as such:

Lab issues: problems and bugs in the lab
Solutions/prep: lab content and solutions
Strategies/stragglers: identifying students in need of spe-

cial attention and how to help them
Social/‘chitchat’: socializing
Logistics: who marks what, “could I have the marksheet”,

having to leave early, who enters grades, etc.
Do not talk - language barrier
Do not talk - no chance: the TAs were too busy in the

lab to talk at all

The chitchat, while off-topic, was useful for beginning TAs
to form friendships with their colleagues – and made it more
likely for TAs to talk about lab issues and strategies. Un-
dergraduate TAs, in particular, noted spending time with
fellow undergraduate TAs outside of class and forming a so-
cial support network with their colleagues.

7. KNOWLEDGE TRANSFER
In our interviews, we saw that most of the knowledge

transfer received by TAs came from fellow TAs – through
informal mentoring, staff meetings, and working together in
the lab. For the first two types of interaction, the knowledge
transfer generally happened from an experienced TA to a
less experienced TA – the “grandmasters” were the sources
of knowledge that other TAs would look to. Noticeably,
TAs did not pay attention to whether a grandmaster was a
graduate student or an undergraduate.

More junior TAs would also emulate other teachers as
they developed a teaching style of their own. Often they
would look to more experienced TAs in this regard, as well
as the course instructors. Often, for the undergraduate TAs,
the TA who had taught them in the course they were now
teaching would still be accessible (or even still teaching the
course). Such veteran TAs were more likely to be sources
of advice, and were most likely to be emulated – “Charlie
was once described at a staff meeting as ‘walking on water’...

very likable, very approachable, helps you figure out what you
were doing, easy to understand... I try to be like him, and
try to show the same enthusiasm” (Arthur)

7.1 Knowledge transfer in the lab
In our field observations, we observed that one TA would

be dominant in running the lab. The students and the other
TA would defer to this alpha TA as an authority; in observ-
ing behaviours, we saw this TA would give most or all of
the announcements to the class, that the beta TA would ask
more questions of the alpha TA than vice versa, and the al-
pha TA would spend more time speaking than the beta TA
– both to students and to each other.

We noticed that a TA did not always have the same posi-
tion in every lab section – a given TA may be alpha in one
section, and beta in another. We did, however, notice that
positions were stable within a pair – a TA who was alpha
on the first day of lab would continue to be alpha. Further-
more, we noticed that novice TAs were in many cases alpha
TAs, particularly when two novices were paired together.

When interviewing TAs about each of their partners, we
asked the questions “would you ask your partner more ques-
tions, or would they ask you more questions?” and “would
your partner give more class announcements, or would you?”.
We then quantified their response as such:

2 pt: “they ask me questions and I don’t ask them ques-
tions” / “I give all the announcements”

1 pt: “they ask me more questions than I ask them” / “I
give most of the announcements”

0 pt: “we ask each other questions equally” / “we split the
announcements equally”

-1 pt: “I ask them more questions than they ask me”/“they
give most of the announcements”

-2 pt: “I ask them questions and they don’t ask me ques-
tions” / “they give all the announcements”

We then add the question score and the announcement score
for each dyad: if the TA we interviewed was the alpha in the
dyad, the score for that dyad would typically be about 3 pts;
for a beta, -3 pts. No dyads had a score of 0.

For each dyad, we determined the TA’s previous TAing
experience to that section, with breakdowns by how many
labs they had taught previously, whether those had been for
that course, whether they had taken the course, and whether
they had taught the course. We also determined the number
of labs earlier in the week the TA had taught. We then
used the lm package in GNU R to model the alpha-ness as a
function of those different types of experience.

We found only two factors were statistically significant
(p < 0.05): whether the TA had taught sections earlier in
the week, and whether the TA had taught these labs before
in previous terms. Whether the TA had taught the labs in
previous terms was a stronger factor.

This fits with the cases we observed in which an experi-
enced TA took on a beta role to a less experienced TA –
their partner had more experience with those labs. Hence,
we see two types of knowledge that TAs draw from:

General teaching knowledge: ability to teach; related to
the Sr. Learner to Jr. Colleague axis

Course-specific knowledge: knowledge of given labs, rel-
evant subject material, and how a given course works.

In the lab, TAs look to the partner with more apparent
course-specific knowledge. In contrast, when TAs described
who they sought advice from outside the lab, they explicitly
selected for friends, colleagues and role models with more
perceived general teaching knowledge.

119

7.1.1 First impressions
One question we asked TAs was about their first impres-

sion of each of their partners. We observed that the words
used to describe this impression varied by whether they were
alpha or beta, indicating that these roles are determined
very early in the term. Charlie, an experienced TA, de-
scribed a TA that he took a beta role to as, “First time I
got to talk to him, he was lecturing [to the class] already.”

Alpha TAs were typically described as “experienced”, “or-
ganized” and “intimidating”; beta TAs were “quiet” and “un-
interested”– but were usually seen more positively over time,
particularly as inexperienced TAs “learnt the ropes”.

7.1.2 Learning from the Alpha
For junior TAs, the beta role appears to be extremely

valuable. TAs new to a course would learn from alpha part-
ners in an informal and often unrecognized apprenticeship.
A sampling of comments from beta TAs about working with
alpha TAs reveals a transfer of knowledge:

• “[During the lab] she would call me over when there
were problems arising, so I could see them”
• “It was pretty neat to see how he was doing the labs. ”
• “I like it better when [my partner] is around. Just be-

cause he knows what he’s doing, because he’s done the
lab before. So if there’s minor details I don’t know, I
can ask him. And if there’s something I can’t explain,
then maybe [he] knows how to do it. And it’s harder
for me to do the challenge problems.”

A number of TAs that had beta roles earlier in the lab
week would hold alpha roles later in the week. Bob was
in such a role, and said: “I would put myself at the same
level [as my beta partner] had I not the lab with [my alpha
partner] and access to what she was doing.”

7.2 Other Influences
After their fellow TAs, course instructors were mentioned

as the most influential people on our participants’ develop-
ment. (Other sources of influence that came up were men-
tors, research supervisors, and friends.) The influence of
the course instructor was not consistently positive. One TA
noted one of the reasons he tried hard to be a good TA was
because he was afraid of the course instructor’s ire – “[this
instructor] doesn’t suffer fools gladly.” (Evan)

Another TA described a course instructor as a negative
influence that contributed to his job dissatisfaction – “[this
instructor] was really lax about standards... [this instructor]
takes these breaks... there aren’t clear instructions on what
to do when [they] leave.” (Ben) Instructors who did a poor
job of management, or were disinterested in supervising TAs,
were identified as negative parts of their teaching experience.

For the TAs who noted course instructors as an influence
on their work, staff meetings would come up as important
times for them. One TA noted that their course instructor
would praise the TAs during staff meetings for their hard
work; three TAs noted they had received good advice during
the meetings. David, who sat in on lectures, noted watching
the instructor and how he handled questions to be inspiring.

It should be highlighted that two of the nine TAs noted
that they had at one point chosen a TA assignment solely
on a desire to work with a particular course instructor. Five
of the nine TAs noted course instructors to be a factor when
listing preferences for TA assignments.

8. DISCUSSION
As a case study, this work provides a rich view of the

TA experience at our institution, useful for improving TA
support. Some threats to validity that should be considered
are the recall bias of the participants, and the filtering effect

of which TAs are rehired. Our analysis used descriptions of
experienced TAs recalling earlier times – which would not
be as reliable as having interviewing them years ago. Also,
at our institution, only generally dedicated TAs apply for
TAships past their 2nd appointment: TAs more motivated
to develop as teachers are more likely to gain experience.

Due to ethics reasons, the study author was the only per-
son who coded the interview data – some bias in coding will
be inevitable as a result. Were the study to be repeated
from the start, we would have added more researchers into
the coding process. Lastly, we should note the identity of the
researcher likely had a (positive) effect in the interviews: by
being a peer to the participants, we feel we had their trust;
we feel TAs were as a result more open and honest during
interviews. We speculate that had a faculty member run
the study, we would not have heard anecdotes about being
uninterrupted for “an hour, an hour and a half” or being
“intimidated” by their course instructors.

8.1 Implications for Practitioners
8.1.1 Implications for TA Training

Based our findings, we highly recommend formally men-
toring TAs – but realize that such mechanisms are time-
intensive and difficult to maintain. For most CS depart-
ments, we expect they would get better results by instead
improving their TA training. We suggest:
• Offer two TA training courses. One for Senior Learn-

ers (those who have not taught before), and one for
Colleagues in Training (those that have).
• Training for Sr. Learners should focus on communi-

cation skills, asserting authority, and triaging student
questions. This is also a place to teach TAs how to
use the department’s chosen technologies for grading
and handin, navigating the computing resources for
undergraduates, etc.
• Training for Colleagues in Training should focus on

pedagogy, effective teamwork, and preparation.
• Both groups benefit from teaching observations, though

the focus on where to improve will differ.

8.1.2 Implications for Instructors
We recommend that instructors pair TAs for teaching

labs. The social support provided by team teaching benefits
all TAs. We also recommend running weekly staff meetings
where TAs can discuss past and upcoming labs.

Positions of leadership – such as a Head TA position, or
curriculum development – should be given to Jr. Colleagues.
Courses that offer tutorials in addition to labs should pri-
oritise assigning these TAs to tutorials. Office hours and
grading should be given mostly to Sr. Learners. These TAs
benefit from building confidence with the course material,
and should be assigned a minimal number of lab sections.

In assigning TA pairs to labs, ensure each lab section has a
TA that has either taught the lab before, or teaches another
section earlier in the week. Course-specific experience is
more important here than general teaching experience.

In running staff meetings, we recommend taking the time
to give TAs feedback on their work. Solicit TA feedback on
labs, and debrief together. We recommend viewing the staff
meetings as a learning opportunity for TAs.

Large courses should also offer weekly staff meetings where
the TAs work through the labs as a group, to help Sr. Learn-
ers with the material – and to ensure more experienced TAs
prepare at all. These staff meetings should be run by a head
TA – a Jr. Colleague – to encourage inter-TA collaboration
(and to lighten the load for the instructor!)

Optimally, TAs would benefit from having one-on-one feed-
back from instructors as well as teaching observations from
either fellow TAs, instructors, or external staff.

120

Finally – and perhaps most importantly – is that cul-
ture is important for raising TAs. Graduate students should
be encouraged to do well at TAing by their research advi-
sors. Course instructors should treat TA supervision as a
TA mentoring opportunity. TAs will do better when they
are encouraged from all sides to take the role more seriously.

9. CONCLUSIONS
We found that our participants’ experience of develop-

ment could be broken into three stages that followed Sprague
and Kugel’s models – although Kugel’s second stage of “fo-
cus on subject” was less applicable as TAs do not determine
subject material in our courses. We saw developmental dif-
ferences in TAs along lines not predicted by either model:

1. Sr. Learners and Colleagues in Training were diligent
at preparing for labs, but Jr. Colleagues could fall prey
to underpreparing.

2. Sr. Learners were generally too overwhelmed in the
lab to coordinate with their partners, and were too
insecure to defer student questions where they did not
know the answer.

3. Colleagues in Training, like Sr. Learners, were immedi-
ately trusting of their partners. Jr. Colleagues needed
trust to be earned. Both Colleagues in Training and
Jr. Colleagues coordinated with their partners, with
Jr. Colleagues doing so in a more systematic fashion.

We found that practice, teaching a different course, men-
toring, effective staff meetings, team teaching, and feedback
all promoted TA development. For Sr. Learners, the staff
meetings and practice were the most important factors; for
Colleagues in Training it was team teaching, mentoring, and
feedback. And for Jr. Colleagues, teaching a new course was
a pivotal experience.

Team teaching was an important, positive experience for
the TAs. For Sr. Learners it gave them security in the lab;
for more experienced TAs it allowed for a division of labour,
teamwork, and diversity in approaches. While conflict was
occasionally present over ambiguity in marking, and profes-
sionalism, the experience of learning from another TA was
clearly valuable for our participants.

Outside the lab, TAs sought advice from “grandmaster”
(Jr. Colleague) TAs and course instructors, and saw them
as role models. Inside the lab, however, knowledge transfer
in a pair happened differently. In a given pair, knowledge
transfer flows almost entirely from what we have termed the
“alpha TA” to the “beta TA”, and these roles would be fixed
over the course of a term. A given TA may be an alpha in
one pair and a beta in another pair.

Interestingly, which role a TA assumes is not related to
their total TAing experience – but how much experience they
have teaching a specific set of lab activities. Having taught
the course previously, or even teaching a lab section earlier
in the week, factors into which TA is the alpha. For example,
we saw Jr. Colleague TAs taking a beta role to Colleagues
in Training who had more course-specific experience.

It appears that TAs draw on two types of experience: gen-
eral teaching experience, and course-specific experience –
and both should be considered when assigning TA pairs.
Instructors have the power to improve social support, feed-
back and mentorship for TAs – and should support TAs
differentially based on their development.

10. ACKNOWLEDGMENTS
We would like to thank our study participants for their

involvement, as well as: Meghan Allen, Patrice Belleville,
Michelle Craig, Steve Easterbrook, Jon Pipitone, Kimberly
Voll, Steve Wolfman, and anonymous reviewers.

11. REFERENCES
[1] Christopher O’Neal, Mary Wright, Constance Cook,

Tom Perorazio, and Joel Purkiss. The impact of
teaching assistants on student retention in the
sciences: Lessons for TA training. Journal of College
Science Teaching, 36(5):24–29, 2007.

[2] Cassandra Paul, Emily West, David Webb, Brenda
Weiss, and Wendell Potter. Important types of
instructor-student interactions in reformed classrooms,
2010. American Association of Physics Teachers
Summer Meeting.

[3] Jens Bennedsen and Michael E. Caspersen. An
investigation of potential success factors for an
introductory model-driven programming course. In
Proceedings of ICER ’05, ICER ’05, pages 155–163,
New York, NY, USA, 2005. ACM.

[4] Valbona Muzaka. The niche of graduate teaching
assistants (GTAs): perceptions and reflections.
Teaching in Higher Education, 14(1):1–12, 2009.

[5] S. S. Bomotti. Teaching assistant attitudes toward
college teaching. Review of Higher Education,
17(4):371–393, 1994.

[6] Eric Roberts, John Lilly, and Bryan Rollins. Using
undergraduates as teaching assistants in introductory
programming courses: an update on the Stanford
experience. SIGCSE Bull., 27(1):48–52, March 1995.

[7] Stuart Reges. Using undergraduates as teaching
assistants at a state university. In Proceedings of the
34th SIGCSE, SIGCSE ’03, pages 103–107, New York,
NY, USA, 2003. ACM.

[8] David G. Kay. Large introductory computer science
classes: strategies for effective course management.
SIGCSE Bull., 30(1):131–134, March 1998.

[9] Jo Sprague and Jody D Nyquist. TA supervision. New
directions for teaching and learning, 1989(39):37–53,
1989.

[10] Ann Q Staton and Ann L Darling. Socialization of
teaching assistants. New directions for teaching and
learning, 1989(39):15–22, 1989.

[11] Robert D Abbott, Donald H Wulff, and C Kati Szego.
Review of research on TA training. New Directions for
Teaching and Learning, 1989(39):111–124, 1989.

[12] Thomas R Guskey. Professional development and
teacher change. Teachers and Teaching: theory and
practice, 8(3):381–391, 2002.

[13] Doug McKenzie-Mohr. Fostering sustainable behavior
through community-based social marketing. American
Psychologist, 55(5):531, 2000.

[14] John A Ross. Teacher efficacy and the effects of
coaching on student achievement. Canadian Journal of
Education, pages 51–65, 1992.

[15] Peter Kugel. How professors develop as teachers.
Studies in higher education, 18(3):315–328, 1993.

[16] Sally Fincher and Josh Tenenberg. Warren’s question.
In Proceedings of ICER ’07, ICER ’07, pages 51–60,
New York, NY, USA, 2007. ACM.

[17] Gabriel Szulanski. Exploring internal stickiness:
Impediments to the transfer of best practice within
the firm. Strategic Management Journal, 17(Winter
Special Issue):27–43, 1996.

[18] Del Siegle. Qualitative research, 2002.
[19] Karen Holtzblatt, Jessamyn Wendell, and Shelley

Wood. Rapid Contextual Design. Elsevier, 2005.
[20] Elizabeth Patitsas. A case study of environmental

factors influencing teaching assistant job satisfaction.
In Proceedings of ICER ’12, ICER ’12, pages 11–16,
New York, NY, USA, 2012. ACM.

121

Computer science students’ causal attributions for successful and
unsuccessful outcomes in programming assignments

Rebecca Vivian Katrina Falkner
The School of Computer Science

The University of Adelaide
Adelaide, South Australia 5005

firstname.lastname@adelaide.edu.au

Nickolas Falkner

ABSTRACT

While some students excel in introductory programming courses,
others find the course to be significantly challenging and
demanding. The way that students reason about the factors that
contribute to success or failure may affect their self-efficacy,
motivation, future success and whether or not they persist in
Computer Science (CS). What factors do students’ perceive to
cause successful or unsuccessful learning outcomes in first-year
programming assignments? Such findings can assist us in
identifying causal reasoning that may be detrimental to future
success and persistence. We use Attribution Theory (AT) as a
framework to explore the “causal attributions” that students apply
to explain their causes for success or failure in introductory
programming assignments, alluded to in their reflective essays
about performance in a course. Our research demonstrates that
reflective essays, integrated into learning tasks, can be one
effective and efficient way to extract students’ casual attributions.
Our results indicate that the students raised a number of causal
attributions in their essays that were specific to the CS-context
and were attributed to both internal and external causes. We
highlight problematic areas of casual reasoning and a need to
correct misleading reasoning to ensure CS students understand
their control over the success of their future programming
assignments. This research offers opportunities for future research
to develop activities that may encourage students to correctly
identify causes of performance outcomes in programming
assignments and to determine if such interventions can prevent
students from leaving CS.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, self-assessment.

General Terms
Computer Science Education and self-assessment.

Keywords
Attribution theory; university students; programming
assignments; attributes; success; failure; self-reflection.

1. INTRODUCTION
There are a number of challenges to educating students in first-
year computer science (CS) courses, as many enter CS programs
with little or no prior discipline experience and are required to
master programming skills and knowledge as well as skills and

knowledge of how to be an effective learner. Learning to program
is a unique experience for each student [18] and while some excel
in introductory programming courses, others struggle with
mastering programming skills and development processes [14; 15]
and find the course to be significantly challenging and demanding
[11; 12]. First-year CS students not only drop-out because of
‘critical’ reasons, but also as a result of multiple minor reasons
that cumulate and eventually result in withdrawal [11], such as
having a lack of motivation and or time for study [12].

While enrolment and retention in CS are often explored by
examining students’ reasons to withdraw, it is not well understood
what students perceive to be the contributing factors to their
success or trouble in learning to program, particularly at the
assignment-level. Poor performance in first-year programming
assignments may have a major impact on an individual’s
emotional state and desire to persist in CS. A great deal of
students’ self-efficacy in the domain of CS is influenced by prior
programming experience and studies have found that as students
progress through CS degrees their self-efficacy in programming
increases [18]. However, what makes some students persist
through a course long enough to gain experience and increase
self-efficacy? Unfortunately, many students may decide to
withdraw early if they encounter early experiences of poor
performance or difficulty in programming assignments.

One possible way of examining students’ perceptions of poor
performance is by Attributional Theory (AT) [8]. This theory is
based on the premise that individuals will assign causal
attributions that explain reasons for success and failure [27].
These reasons might be due to internal (self) or external
(environmental) and stable (fixed) or unstable (changeable)
factors. What we hope that CS students perceive their
performance to be due to internal reasons, which are changeable.
For example, positive outcomes can be acquired through
increased effort and/or the use of a software design, rather than
external reasons such as harsh marking, which can instil feelings
of hopelessness and no control of their learning performance.

In other discipline areas, students have been trained to change
their causal attributions for performance which has been found to
improve performance and retention [8; 17]. However, in CS we
have factors that are unique to our field, such as the presence or
lack of previous programming experience and certain software
design processes and strategies that can contribute to successful
software programming [2]. Identifying problematic reasoning for
causal factors that students attribute to successful and
unsuccessful outcomes in an early programming course, may
assist our understanding of how to guide or ‘retrain’ first-year
thinking about programming processes and learning processes, in
their authentic environments. Such understandings may assist us
to prevent students from attributing to external and unchangeable
events that ultimately may cause feelings of ‘helplessness’,
‘shame’ or ‘humiliation’ [27] that may result in them dropping out
from the degree in the long-term.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
Koli Calling '13, November 14 - 17 2013, Koli, Finland
Copyright 2013 ACM 978-1-4503-2482-3/13/11…$15.00.
http://dx.doi.org/10.1145/2526968.2526982

122

We apply content analysis, using the AT framework, to students’
essays in which they reflect on their learning experience in a first-
year programming course. We use the framework to identify
causal attributions students raise and to determine if students’
certain causes to lead to successful or unsuccessful outcomes.
Furthermore, we wanted to determine if students mention causal
attributions particular to the CS-discipline. We begin this paper
with a discussion of literature relating to the use and importance
of reflection in learning, followed by a discussion of AT in the
field of academic achievement and factors currently identified in
the literature that explain students’ reasons for success and failure,
with a particular focus on the CS context.

2. BACKGROUND AND RELATED WORK
2.1 Reflection in learning
The transition from novice to expert programmer is assisted by
reflection on prior successes and failures [19], followed by
analysis of potential areas for improvement. Reflective thought is
an act in which individuals carefully consider beliefs or
knowledge that lead to conclusions [4]. When reflecting,
individuals rely on evidence of some form that leads to belief. In
the context of success and failure, individuals will weigh up
evidence that they believe has led to particular outcomes. When
individuals engage in reflective thinking about their learning
processes, these thoughts can inform individuals about how they
may adapt their behaviour to perform better in the future.
However, misguided reasoning may be detrimental to
performance or self-efficacy.

A number of studies have sought to understand students’ learning
processes in software design. When students have been asked to
reflect on software processes, students focus on non-discipline
specific strategies [6; 22], in particular those associated with
design-oriented stages [16]. Furthermore, when students are asked
to provide advice to other first-year programmers studying, they
are highly focused on non-discipline specific learning strategies,
such as time management and planning [6]. When it comes to
improving their practice in programming tasks, students have
been found to struggle with developing appropriate plans to
improve learning performance [22] and only in the final stages of
programming processes have students began to connect practices
with potential improvement strategies [30]. An inability to
identify how to improve practice is problematic because a critical
variable of practice and competence has been found to be, not
time spent engaged in an activity, but the intent involved in
figuring out how to improve practice [30]. The results bring us to
question if students acknowledge stages of the software
development process that we ‘preach’ as leading to effective
practice and contributing to their successful outcomes?

Reflective tasks are often incorporated into the CS curriculum to
encourage students to consider how to improve their software
development processes. Authors have argued that reflective
writing can provide a critical role in promoting reflective learning
and can encourage students to make connections between learning
tasks [21]. In their experience of open-ended reflective essays,
students did not reflect on their learning processes and it was only
when students had explicit prompts that they began to reflect on
learning processes [7]. The authors suggest that if wanting to
extract such information through open-ended questions, it appears
to be important to include explicit prompts to guide students
toward such aspects of their learning experience.

One aspect of reflection that maybe be elicited through reflection
may involve an individual making causal attributions: reasons that

explain success and failure [1]. The following section will discuss
this theory in light of the relevant literature.

2.2 Attribution Theory (AT)
Attributions, in combination with motivation, has been found to
predict almost 50% of the variance in students’ university Grade
Point Average (GPA) scores [28], suggesting that causal
reasoning plays an important part in the learning experience. AT
rests on the presumption that the result of an action is felt to
depend on one of two conditions: factors being within the person
or factors external to the person [9; 23]. Heider [9] originated AT,
however, Weiner and colleagues have developed the previous
work to include constant and variable internal causes and
understandings about the role of emotions and motivation [23-26].

Figure 1 depicts AT as a 2x2 representation model [27]. The
model includes four determinants of behavioural outcomes
(ability, task difficulty, effort and luck) and two causal
dimensions (locus and stability). Stability is measured by how
much control one has over the situation and if a cause is subject to
change in future events. For example an attribute such as effort or
luck has potential to change, making it unstable, whereas
someone’s perception of his or her ability or personality at a point
in time is fixed. Theory suggests that when people attribute their
successes to unstable causes (luck or effort) and their failures to
stable causes (ability or task difficulty), the probability of
persistence is low [28]. Another dimension of the model is
measured by internal or external causes. Internal causes are about
the self, such as one’s ability or effort and external causes are due
to factors in the environment or external to the person, such as
task difficulty or a perception of harsh marking.

Figure 1: Weiner's (2010, p. 32) representation of the four
main causes of behaviour
There are a number of attribution-emotion linkages that have been
made between aspects of the model. When people fail, it is
believed attributions that fall within the internal/stable dimension
can lead to shame or humiliation because these are causes
attributed to the self and as something that cannot be changed.
Feelings generated by this dimension can influence one’s feelings
of self-efficacy in a domain, which are beliefs about competency
to perform a goal [1]. Research has shown that a primary
influence on CS students’ self-efficacy is influenced by prior
programming experience [18]. A poor experience in
programming, attributed to internal/stable causes, such as ability,
may create negative feelings toward future programming tasks
and can potentially lead students to believe they are not capable of
being a computer scientist because programming is an innate
ability [20]. In the internal/unstable dimension feelings of guilt
may arise because individuals recognise they had personal control
over how they prepared for academic tasks and consequently
brought about their own outcomes. Although we don’t want
students to feel guilt, we hope that students realise that they have
control over their learning processes because this leads students to
perceive future success can be achieved by adapting learning

123

processes and behaviour. Typically success attributed to internal
reasons generates more pride than by external reasoning [27].
When individuals perceive their failure is due to external/stable
reasons, such as task difficulty, they may experience feelings of
‘helplessness’, a feeling that any outcome in the situation was
beyond their control [1], which is something that we want
students to avoid. Feelings of hope can be generated when
individuals attribute failure to external and changeable factors,
such as luck, because they hold the belief that things could be
different the next time.

In a study of nursing students, authors analysed two open-ended
survey questions to determine what they attribute to unfavourable
and successful learning outcomes in a course [5]. Using content
analysis the researchers identified whether students were making
internal or external causal attributions and found that the majority
of respondents (84%) attributed their academic successes in the
course in part to internal causes, and a number of respondents
(68%) attributed their academic failures, in part, to external
causes. Overall, most students primarily attributed successes to
controllable, unstable causes such as ‘effort’.

In the CS context, 19 narrative interview extracts about students’
lived experience in a foundational computer-programming course
were analysed. Researchers identified ten causal attributions that
emerged in reaction to the question: ‘what do you think have
caused the course outcome [of your grades]?’ [7]. Responses
included: learning strategy (40%); lack of study (31.1%); lack of
practice (22.2%); appropriate teaching method (13.3%); subject
difficulty (4.5%); and (all with 2.2%) a lack of effort, exam
anxiety, cheating, lack of time and unfair treatment. The authors
claim that, of the ten causal attributions, only two (lack of effort
and subject difficulty) were amongst the four causes that
Weinberg (1958) identified, as ability and luck were not
mentioned. The authors reason that ‘ability’ may not have arisen
in the interviews because the course was not based on
mathematics, which is where AT is commonly applied and that
luck did not surface because their exams were in lab environments
where students use an existing development tool to build a
solution. This is somewhat surprising because ‘ability’ was one
contributing factor acknowledged as why students choose to
major in CS [13]. Furthermore, the literature presented so far
suggests that causal attributions of ability are not only restricted to
the field of mathematics, as although small in size, 3 of 75
students in the discipline of nursing attributed their course success
or failure to ‘ability’ [5].
A survey of 45 first-year CS students [10] revealed those with an
optimistic attribution style performed better than those who had
less optimistic styles. Students who explained positive events as
internal and stable had better grades than students with pessimistic
attributions. The authors reason this could be due to optimistic
attribution styles as having a predicative effect on programming
performance or that success is often attributed to personal causes
and unsuccessful outcomes to external factors. Ability accounted
for the largest proportion of the variance in students’ course
performance and the causal dimension of stability was
significantly related to performance; suggesting that students
perceive the causes of their performance are relatively stable over
time. The authors suggest strategies such as providing students
with achievable programming tasks early on to experience success
and to encourage students to interact with teachers or peers about
reactions to performance so that those who experience failure may
be encouraged to view it as something that is temporary.

Lewis, Yasuhara and Anderson [13] undertook semi-structured
interviews with 31 students enrolled in introductory programming
courses at two colleges. Using grounded theory, they analysed
interview transcripts and identified five factors that influenced
students’ decisions to major in CS, which were: ability,
enjoyment, fit, utility, and opportunity. In their paper, they
explore ‘ability’ and how students measured their ability in terms
of speed, grades and previous experience. They discovered that
these experiences came about because they were influenced by
experiences in their environment and through their perception of
ability as being fixed or malleable. These factors identified by the
researchers are very similar to the facets identified in AT.
Although the authors explored students’ perceptions using their
own grounded theory approach, examination of their paper reveals
that many of the students’ quotes could be understood using the
AT framework, in particular those beliefs of ability being fixed
(internal/stable) or malleable (internal/unstable) and by
experiences in the environment (external stable/unstable). For
example, one student states that their success was due to being a
‘fast learner’, which could fall within the internal/stable trajectory.
Or another example is that a student believed that their success
was not accurately reflected because the grades they receive never
depict their actual level of understanding, which could be an
external and stable perception. What we realise is that, AT offers
a framework for analysing students’ attributions in the field of CS
and, besides gathering attributions via surveys, the framework can
also be applied on qualitative reflections.

In recognising that failing first-year courses can be an
overwhelmingly negative event for students, researchers sought to
determine if an Attributional Retraining (AR) treatment
intervention could have any influence on performance through a
series of reflection activities. AR involves restructuring students’
causal explanations of poor performance by encouraging students’
to re-think how they attribute causes for failure. AR encourages
students to consider controllable attributions, such as effort and
learning strategies instead of unchangeable attributions such as
ability or intelligence [8]. The results found that the AR treatment
was found to be successful in a Canadian first-year psychology
course [8; 17] and that the AR intervention reduced the likelihood
of failure for those students who undertook the program.
Additionally, the program’s success was found to surpass several
other common factors that influence academic outcomes, such as
gender, age, past performance and learning environment variables,
such as orientation involvement. However, it is stated that CS
involves unique aspects that can influence learning [2], such as
the presence or lack of previous programming experience and
design-oriented strategies, making it necessary to explore causal
attributions that students use in the CS context, to identify
problematic causal reasoning that we may be able to correct
through CS education.

2.3 Motivation for the study
Many of the studies discussed are based primarily on ‘snap shot’
survey instruments, where students are forced to respond to
certain causal attributions about a whole course or their CS
program experience. We would like to know how students
describe their own personal attributes for ‘success’ and ‘failure’ in
terms of their assignment submission and software development
process; both of which students are able to plan for; implying they
have time to be able to prepare, research, test programs and
monitor their process over the duration of a course. We wanted to
see if we could apply the AT framework to code students’ essay
reflections about their design process and programming
assignments. In doing so we sought to determine if students make

124

causal attributions to ‘task difficulty’, ‘ability’, ‘luck’ and ‘effort’
and if there were other CS attributions that students made.

The research tells us that external attributions are detrimental to
learning processes and we seek to identify those external
attributions specific to the CS degree as well as identify internal
attributions and areas where students feel these contribute to
success or failure. In doing so we may be able to identify and
correct misconceptions and celebrate positive attributions. Such
information could assist us in making adaptions to better scaffold
students to take ownership for the success of their learning
outcomes in the CS-discipline.

3. RESEARCH METHODOLOGY
We adopted an instrumental case study design, whereby data were
collected and subject to directed content analysis [29]: an
approach commonly used to validate or extend a previous
conceptual framework or theory. Our approach extends upon
existing frameworks of AT; applying AT within the context of
software development processes. An instrumental case study
approach uses a particular case as an illustration to understand a
phenomenon, which in this case is students’ attributions toward
successful or unsuccessful outcomes of their submission of
programming assignments [3; 29]. The small sample size of case
studies allow researchers to capture the complexities of a
phenomenon and explore in qualitative detail students’
experiences. Using this research approach we investigate the
following research questions:

1. Are there CS-specific causal attributions that we can identify in
students self-reflections using the AT framework?

2. What causal attributions do CS students believe lead to
successful or unsuccessful outcomes in programming assignments
and what causal attributions are potentially problematic?

As this course is about algorithm design and data structures, we
anticipate and hope that students identify that the use of a design
leads to successful outcomes and that a lack of design can impact
negatively on their performance in a programming assignment.

3.1 Case Context
The case considered in this research project is a final course in our
introductory programming sequence at The University of
Adelaide (UoA) in 2012. Students within this course have
completed 1-2 prior programming courses, providing them with
competencies in the application and tracing of fundamental
programming constructs, and design skills within small scale
problem solving. The learning objectives for this course include
awareness and application of simple data structures, related
algorithms and algorithm complexity, and initial experiences in
medium-scale problem solving and software engineering. This
course contains, for many students, their first experiences with
nontrivial complexity software design and development. The
course includes a substantial, supervised practical component, of
between 2-4 hours per week, in addition to small-group
collaborative work within lectures and tutorials. Students are
assessed on the functional outcome of their programming
assignments, and their process, via design documents and
descriptions of testing strategies. In addition, the course includes
two structured reflective exercises that require students to describe
their current software development processes, how they have
changed and a description of how they intend to change them in
the future. These exercises provide a small contribution, less than
2% in total, to their final grade. We have analysed the second
reflective essay for analysis as this enables us to capture students
reflecting on their progress and processes for the semester. We

randomly selected 85 (of 98) students’ reflective essays for
analysis. Students were asked to write a reflective essay about
their learning experiences in the course in relation to the
production of their programming assignments. The essay was to
be 2-4 pages in length and was marked out of 10 (although only
contributing to 1% toward their course grade). Because the essay
was based on opinion, marks were allocated primarily toward the
structural components: grammar and spelling (4), length (2),
quality of essay response (2) and advice for students taking the
course in the future (2). Students have been found to struggle with
reflecting on learning processes [7], therefore, to encourage
students to reflect we included explicit “prompt-like” questions in
the essay task description that asked students to consider aspects
such as, if they submitted their work on time and why or why not.

3.2 Coding Framework and Content Analysis
We began by importing the 85 self-reflection essays into NVivo
10 for analysis. We created four nodes (causal attributes)
identified by Weiner of ‘ability’, ‘task difficulty’, ‘luck’ and
‘effort’. We coded the students’ utterances in the essays that fell
into any of Weiner’s categories. If the student made a causal
attribution and it was not one of the existing attributes or was CS-
specific, we created a new node for that attribution. In the end, we
had a list of 16 causal attributes that the 85 students had
identified. These attributes will be discussed shortly. Each student
could identify multiple attributes in their essays and could identify
factors that contributed to success and difficulties. When an
utterance was coded, we also coded the utterance as being an
‘unsuccessful outcome’ or ‘successful outcome’. For example, if a
student believed the marking criteria was too complicated to
understand and because of it they received poor grades, we would
code this as an attribute for ‘marking criteria’ and for
‘unsuccessful outcome’. Using this method, we are able to
determine which attributes are associated with certain positive or
negative outcomes. In section 4 we elaborate on our methods and
use of AT as we present the results. For anonymity each student is
provided with a random number when quotes are used.

One researcher, with a background in education research and
previous experience in content analysis, whom was not involved
in teaching at the university, conducted the coding. Upon
completion of the data analysis, the researcher presented examples
of coding to two CS academics at UoA with expertise in CS
education research to confirm coding decisions. We found no
disputes in reasoning, however, we recognise that the results are
based on three researchers’ judgements with westernised views
about where particular attributions fit in the AT model and which
attributions are perceived as successful or not, however we
endeavour to recognise and explain our judgements where
possible. Future work will involve an external researcher to
conduct coding comparisons for accuracy of content analysis with
more cases. We acknowledge that student essays were perceptions
about what students think caused outcomes in their learning and
how the researcher interpreted their essay. In future work we will
involve students to discuss what we coded as their causal
attributions to determine the accuracy of our interpretations.

4. RESULTS
The pie chart in Figure 2 illustrates the types of causal attributes
students raised in their reflections. We can see that time
management and design strategy are two primary areas, although
this is not surprising as the task asked students to reflect on these
components. Effort, ability and the pre-assessment of task
difficulty were other primary factors. Using the attributions above,
we extracted whether they were coded as an ‘unsuccessful’ or

125

‘successful’ outcome using an NVivo coding matrix and were
able to report the percentage of the total of 85 students who
mentioned the attributes as leading to positive or negative
outcomes. We present the causal attributes associated with
unsuccessful outcomes and successful outcomes in Table 1.

Figure 2: Pie chart that illustrates the number of students
raining particular attributions in their reflective essays

As mentioned previously, each student may have discussed
multiple attributes that contributed to their success or difficulties.
The results reveal that when reflecting on difficulties in
programming assignments a number of students attributed causes
to time management strategies, effort, lack of design and
programming ability. Although not as common, students also
perceived factors such as their personality and teachers to play a
role in poor performance. Overall, what we see is that across all
student essays, a number are attributing unsuccessful outcomes to
internal and external factors. We will explore these in relation to
the AT framework in the following section. Table 1 also reveals
that a number of students perceived time management, presence
of a design and effort to influence the success of their
programming assignments. Additionally, social interaction with
peers and teacher guidance played a role in successful outcomes.

Table 1: Causal attributions identified by students that
resulted in unsuccessful and successful outcomes (n=85)

Unsuccessful Successful

Time management 43.5% Time management 40.0%
Effort 32.9% Design strategy 31.8%
Design strategy 25.9% Effort 10.6%
Ability 21.2% Social interaction 8.2%
Pre-assessment of task 14.1% Teachers 8.2%
Other deadlines 11.8% Pre-assessment of task 4.7%
Task difficulty 11.8% ‘Sleep on it’ 4.7%
Course 9.4% Ability 3.5%
Social interaction 7.1% Luck 3.5%
Exclusive situation 5.9% Marking criteria 2.4%
Marking criteria 5.9% Exclusive situation 1.2%
External distractions 4.7%
Misunderstanding task 3.5%
Teachers 3.5%
Personality 1.2%

Using the AT model with the stable/unstable and internal/external
matrix, we “mapped” each causal attribute (previously coded
nodes in NVivo in Table 1) by sorting them individually to an
appropriate dimension of Weiner’s causal attribution model
(Figure 3). To sort the attributes, the researcher applied Weiner’s
measurement of causal stability; which involved judging whether
students perceived the causal attribute to be stable (fixed

/uncontrollable) or unstable (possibility for a different outcome in
the future and/or changeable), and also according to the causal
locus, so whether it was a result of the self (internal) or due to
external factors. For example, the presence of a design strategy
was mapped as being internal and unstable because, like effort,
students would use one or not but the choice was up to them to
create one for their programming task. In Figure 3, we colour
coded each of the attributes to represent them as leading to a
successful or unsuccessful outcome. In the previous tables we
presented results that indicated a lack or absence of a particular
attribute could lead to an unsuccessful outcome (e.g. effort), here
we colour code attributes based on whether the students believed
the presence of a factor would lead to successful outcomes, even
if they had done the opposite. We wanted to see what factors
students recognise as leading to successful or unsuccessful
outcomes, even if they had not ‘followed their own advice’ or
only realised this on reflection. For example, a student may have
said they were lazy in the course, which led to poor grades but had
they put in more effort they could have done better. A statement
indicates the student knows higher effort equals success. Factors
that are perceived to lead to successful outcomes are coloured
green and attributes that are perceived to contribute to poor
performance are coloured red. Blue attributes indicate students
perceived the attribute to lead to both successful and unsuccessful
outcomes. For example, in regard to ability, some students felt
their previous programming experience allowed them to
undertake the task easier than others, whereas others reported that
their lack of programming experience or skill caused them to
struggle in assignments.

By mapping students’ attributions we are able to identify the
attributes that students incorrectly perceive to lead to certain
outcomes in programming assignments and factors they feel they
have no control over. In doing so, we are able to identify
misconceptions that need to be corrected. We proceed to explore
each dimension and the attributes identified so far in detail.

4.1 Examining attributions
We explored students’ attributions within the four dimensions of
Weiner’s model and whether students perceived the attributions as
causing successful or unsuccessful outcomes. Most students
demonstrated responsibility over aspects of their behaviour in
programming assignments, however a number of causal
attributions mentioned demonstrated a lack of ownership over
particular outcomes. Table 2 provides examples for how different
students with different reasoning in each of the dimensions might
approach and consider a complex programming task that a teacher
sets. Those with a disposition to typically attribute outcomes to
external causes may approach a task differently to those with a
tendency to reason toward internal factors.

4.1.1 The internal & stable dimension
The internal and stable dimension involves students attributing
toward personal factors that are ‘unchangeable’; those perceived
to be ‘the way things are’. In this dimension we identified students
attributing to ability, personality and assessment of the
programming task.

Weiner [27] identifies ‘ability’ as being an attribute in this area
and similar to previous studies [10; 13] we also found students
discussed ability as a contributing factor. Ability in the CS context
related to ability in programming languages, programming skill
and ability to understand the programming task. Students
identified a high-level of ability and confidence in programming
as leading to successful outcomes.

126

Figure 3: Students’ causal attributions reflecting on a programming course using Weiner’s framework

Table 2: Example of how a student might approach and
perceive the outcome of a challenging situation

Internal/stable
They did not have the required
knowledge or ability to solve the
programming problem. Tried but they
are not good at programming yet.

External/stable
The programming task was too
difficult and the marking criteria
were vague. The teacher also
marked harshly.

Internal/unstable
Able to complete the task because
they identified key concepts they did
not understand, searched Google and
taught themself.

External/unstable
Successful outcome viewed as
‘lucky’ because they had no idea
what they were doing and hacked
away at their code until it worked.

One student was ‘able to complete the work quicker as I learnt
more about programming as well as having had more practice’
(Student 1). On the other hand, students identified a lack of ability
as a disadvantage. For example one student believed that ‘having
started uni when Java was taught, I didn’t have the same depth of
knowledge and experience with C++[as others]’ (Student 2).
Students identified the step of assessing the difficulty of
programming assignment tasks as one important stage in their
assignment process. We placed this as both internal/stable and
internal/unstable because at times, students would reason that
their assessment of the task was a result of ‘effort’ or because of
their ‘ability’ to assess the difficulty. In this dimension, examples
include those where students incorrectly assessed the difficulty of
the task: I thought I should be able to finish the practice in 4-5
hours. However, when I begin to work on the practice I realize
that it is more complex than I thought. I wrongly assess the
difficulty of the assignment (Student 3). Students expressed that a
level of ability was required to accurately assess the necessary
knowledge for the assignment, the difficulty and/or time needed to
complete. Many students believed this was developed through
experience and a number of students reported getting better at this
skill over the semester.
Another internal/stable attribute was due to ‘personality’ factors.
One student believed starting programming assignments late on a
regular basis was due to their ‘personality’, that it was in their
nature to work on tasks that appeal to them at the time rather than
what needs to be done; hindering their performance.

4.1.2 The internal & unstable dimension
Internal and unstable attributes are factors that students perceive
they have control over, that influence their learning outcomes.
Many of these attributes are familiar to academic contexts, such as
effort invested into assignments or time management; however,
we also found other self-initiated factors, such as the use of a
design or pre-assessment of tasks, also played a role in students’
successful completion of programming assignments.

This course was focused on teaching students about designs for
software engineering and it was anticipated that, through the
activities implemented and the course content, students would see
the value in using designs and that use of designs can contribute
toward efficiently created and successful programs. While some
students, like the following, saw the value in designs and followed
through with using detailed designs for their assignments, others
despite being encouraged, did not implement a design.

Using a full design always resulted in a better outcome, a better
final product completed in less time. Knowing both what
algorithms were going to be used and how they functioned meant
that it became much easier to locate and fix errors encountered
during compile or run time. (Student 12)
Most students realised that a lack of design resulted in lost time
and therefore, lost marks. Two practicals, class 4 and 5, were
designed to be significantly more complex than previous
programming tasks and as a result the practical complexity
resulted in students realising that a lack of design produced a poor
assignment. As this one student states: ‘I also made this mistake in
practical 4 and 5, where I didn’t write complete design of how I’m
going to solve the problem, which cost me a lot of time and marks’
(Student 13). While some changed their behaviour after practical 4
and 5 to include a detailed design to increase performance, a
number continued to go without designs, knowing it would
potentially hinder their performance. Such behaviour is closely
linked with effort because students would put the effort in to
create a design and their effort also determined how much detail
they invested into their designs.
Effort is an attribute that Weiner identified and, in this context,
effort involved the extent to which students invested effort to find
additional resources, read lectures or assignments ‘thoroughly’, or
to investigate concepts that they did not recognise or know very

127

well in the programming task. Although some cases of ‘effort’
could also be coded as ‘time management’, students articulated
some aspects of design, programming or learning processes as
being based on effort. For example: ‘In order to complete the
work on time, all assignments were initially read through as
thoroughly as possible. This gave maximum time to think about
the problem at hand and find an optimal solution’ (Student 4). In
contrast, students who identified themselves as being ‘lazy’ and
approaching the task carelessly or with a lack of effort
acknowledged that such behaviour resulted in work that was of
poor quality and with additional effort they could have achieved a
higher grade. For example: ‘I lost marks I shouldn’t have as I was
too lazy or forgot to add in comments or format my code’ (Student
32). In some cases, students completed designs as an afterthought
because it was something that was required for marks and many
students lost time by going back to do the design after because of
difficulty in remembering processes. As we hoped students
attributed success to having a detailed, proactive design, but
unfortunately they did not always follow their own advice.

In the essays students mentioned assessing the difficulty of their
programming assignment as a step in their software design
process. As mentioned previously students perceived the success
of their outcomes at times relied on their ability to pre-assess a
task, however, they also discussed this step in terms of effort. This
is because students did or did not put the effort in when receiving
their assignment to assess the difficulty. If they did, they would
use this information to inform their design and how much time
they would allocate to the task.

Assessing the difficulty of an assignment before beginning to code
was an important step. Often this was helped along by a good
design that reflected how the practical was going to be
constructed. (Student 14)
For students who did not assess the difficulty of the task, or
underestimated the difficulty, it resulted in poor time management
and often students submitting incomplete or poorly written code.
For example, a student claims: ‘I rarely took the difficulty of an
assignment into consideration before beginning work on it…
[therefore, I] needed to rush certain aspects of the coding in an
attempt to complete it on time’ (Student 12).
Having good time management was often mentioned as
contributing toward successful programming assignment
outcomes and timely submissions. Time management is crucial to
programming assignments, as students need to account for
unforeseen issues and time for testing, problem solving, and de-
bugging. Students who were able to cater for these factors
reported having good time management.

I can attribute most of my assignment submission success from
simply allocating plenty of time in case things went wrong.
(Student 6)
However, a number of students struggled with time management,
identifying that their lack of time management skills resulted in a
build up of assignments and rushed submissions. As one student
said, ‘I found myself regularly starting assignments quite late…
rushing to get my work done… I had to compromise marks’
(Student 9). Although not uncommon in academic assignments,
what makes programming assignments unique is often the
allocated time required for particular design-stages and testing of
code that, like editing an essay in another discipline area, allows
students to refine and edit their code to produce higher quality
assignments. It appears that this is a stage students often omit.

While we encourage students to use their programming
assignment marking criteria to guide the development of their
design and planning of time, we are unsure whether students
actually use this process and how they perceive the use of this
strategy. We found that some students used the marking criteria as
a guide and felt it assisted their pre-assessment and completion of
programming tasks: I always followed the structures given
because they were logical and very flexible approaches to the
problems… This worked well in preventing me from
procrastinating because there was pressure to complete tasks by a
certain time (Student 11). In these instances students perceived the
use of the marking criteria led to favourable outcomes, whereas
others had a negative perception of the marking criteria and
perceived the marking criteria from an external/stable position,
which we will discuss shortly.
Despite CS being perceived as a solo experience, a number of
students mentioned social interaction as influencing their success
in programming assignments. This included approaching peers or
teachers for help, assistance or ideas, or by casual conversations
with peers or engaging with the discussion forum.

Nine times out of ten if you find a problem and can't work it out
there will be someone else that has a different view and can give
you some advice in another direction to take. (Student 16)
While this could be perceived as an ‘external’ influence we placed
it within the internal/unstable dimension because students
discussed this aspect in terms of needing to put the effort into
interacting with others. For those students who did not draw on
social support, they felt it led to more work on their behalf. For
example two students discussed how they had to ‘Google’ how to
do certain aspects of the task or research lecture slides in advance,
knowing that their peers were likely discussing solutions to such
aspects in the forum. Although it did not directly result in a poor
outcome, this was time spent on activities that could have been
spent elsewhere, such as testing, de-bugging or refining code. As
one student states: I did not have enough communication with
tutor. When I met problem, I did not turn to anyone. As the result,
I had to contribute more time to my work (Student 17).
Similarly students perceived interaction with teachers as
contributing to their success and this was because the student had
made an effort to approach the teacher in the practical sessions.

One of the practical demonstrators gave me some great advice
which I started using straight away… and to my amazement, my
coding life so to speak was a whole lot easier! (Student 18)
The structure of our practical classes encourages such situations,
as students are able to check their practical work and ask
questions in class. However, this requires students to take control
and approach the tutors in-class, as required.
Internal and changeable attributes are favourable and we have
discussed a number of examples where students have perceived
their outcomes to be caused by attributes that fall within this
dimension. We hope students attribute to causes within this
dimension because it means they are able to reflect on their role
and how their behaviour influenced an outcome. When students
fail and attribute their cause to a certain factor within this
dimension, it is important they are also able to consider
appropriate strategies that can improve performance. Without
effective strategies or the ability to improve behaviour, the student
may still encounter unsuccessful learning outcomes.

4.1.3 The external & unstable dimension
The external and unstable attributes are factors that students
reason are caused by chance. For example, in a positive outcome,

128

a student may attribute the outcome to being lucky, whereas in a
negative outcome they may consider the outcome to be
unfortunate or unlucky. Two aspects that students’ considered that
led to successful outcomes that fell within the external and
unstable dimension were luck and the act of ‘sleeping on it’.
Students perceived that their successful submission and code was
due to being ‘lucky’, with no understanding of how their learning
or software development processes or other internal attributional
factors contributed to this success.

it was completed on time… mostly due to sheer luck, as the
program was not working rather close to the deadline and only
with some aimless tinkering did I actually find out the cause
(Student 21)
Students also thought that giving themselves time to process
information led to better outcomes or an epiphany. One student
claimed that they ‘found helpful… to sleep on it. Giving my brain
time to process the information gave more clarity and
cohesiveness to the code’ (Student 22). While ‘sleeping on it’
could also be considered as an internal/unstable attribution
because students choose to behave a certain way (by taking a
break), we have made a judgement to place it within the
external/unstable dimension as we viewed this as students
believing clarity will be achieved through ‘chance’ or luck. While
students who receive this clarity may have a fortunate outcome,
for others who do not experience clarity and receive a negative
outcome, they may believe this to be the result of factors that are
internal and unstable, such as poor time management or external
and stable factors, such as task difficulty.
Within this dimension we found students expressed
‘misunderstanding the task’ as an unfortunate and unlucky event
that lead to unsuccessful outcome. One example of this behaviour
is when a student stated that ‘the library practical … is what I
found snuck up on me and would have liked some warning myself’
(Student 24). Such situations may have been prevented with the
use of learning strategies that other students used, such as pre-
assessing the task or managing plans to account for unforeseen
circumstances and de-bugging.

4.1.4 The external & stable dimension
The external and stable dimension involved attributions that
students perceived to be causing outcomes that were beyond their
control and due to reasons that were the result of other
individuals, the environment or because of the situation. These
included course factors, marking criteria, teachers, other
deadlines, and distractions.

Students perceived course factors, such as length of time to
complete tasks and the structure of courses had a negative impact
on the time they had to complete tasks. Furthermore, some
students believed that the limited resources they received were
hindering their ability to learn course concepts, as one student
states: ‘[t]here were some resources provided but they didn’t
provide the depth that I got by reading the textbook almost cover-
to-cover later in the semester’ (Student 2). Although this student
went on to use the textbook, these students could benefit from
knowing that others who also did not understand course concepts
had researched how to approach the task or asked the tutor or their
peers for assistance.
Although ‘marking criteria’ surfaced as an internal/unstable
attribute, where students incorporated the criteria into their
programming design plan and time allocation, other students
perceived the ambiguity or difficult wording on the marking
criteria to fault them. For example this student claims ‘at no point

was any clear definition given regarding what form these designs
should take…. it apparently didn't sufficiently fit into the 'mystery
box' of expectations that the marking criteria demanded’ (Student
26). While there were a number of other strategies the students
could have used to prevent this situation, such as drawing on peers
or teachers, or researching components of the problem; these
students felt ‘stuck’ or ‘tricked’ and as though they could not
change the situation.

While teacher assistance was perceived to contribute to success
for those who initiated help seeking (in the internal/unstable
dimension), for those who experienced negative outcomes, some
believed their teacher was the cause, in terms of marking or
teacher effort. The student above who attributed an unsuccessful
outcome to the marking criteria also believed their assignment
was ‘deemed unsuitable for assessment, because, I assume, the
demonstrator didn't have time to read it. Similarly another student
felt they could not receive help in practicals because ‘the practical
sessions are always very busy and we have to wait for long time to
get mark. There is little chance to ask questions or let tutors help
me to fix my problems’ (Student 27). Both examples demonstrate
the sense of ‘helplessness’ that students felt and depict the
perceived lack of control about their situation.
Interestingly, one student took a positive perspective on their
situation. The student believed the situation had caused them to
approach their assignment differently, leading to better quality
work by reasoning that ‘not having access to a programming
environment at home forced me to think about my code without
the temptation to begin coding. Through this, I developed good
habits and discovered the usefulness of a detailed design’ (Student
28). However, with a negative outcome, others perceived their
situation put them at a disadvantage, for example by missing a
practical or tutorial for reasons such as going on holiday.
Similarly, and although not uncommon in university contexts,
students externalised their failure to reasons such as other course
deadlines. Students displayed a sense of ‘helplessness’ and
inability to adapt their behaviour to take into account deadlines.
I was unable to start practicals 6 or 9, as one of my other subjects
demanded an entire week's worth of work on those weeks. I don’t
think this is something that could have been improved upon with
better time management; this was an unfortunate clash of
priorities. (Student 31)
Rather than taking ownership over their time management and
planning, these students had exhibited helplessness in their
situation. Even when discussing distractions students described
being distracted with an attitude of helplessness over their
learning environment that contributed to poor use of study time.

5. DISCUSSION
While Hawi [7] was able to demonstrate that narrative interviews
were a successful means to uncover causal attributions, our work
reveals that students were able to reflect on casual explanations
for successful or unsuccessful outcomes in their programming
assignments through a narrative reflection task. This approach, in
comparison to interviews, reduces the inconvenience and time
required of students. A number of students were able to reflect on
causal attributions using reflective prompts, provided in the essay
description, making it a useful method to ignite students to reflect
on their learning processes and the causes of success and failure.
Although it is not certain what impact the use of self-reflective
essays had on subsequent performance and some students were
attributing to problematic causes, the reflective essays encourage
most students to realise aspects of their performance they can
improve. Such findings suggest that the use of reflective essays

129

are valuable and could be applied in other CS courses where
students are required to develop their programming or learning
processes.

Students identified a number of multiple causal reasons for
success or troubles encountered in their programming
assignments. Like previous studies [6; 22] the students did focus
on non-discipline specific strategies as we identified a number of
causal attributions that could be present other discipline areas,
such as: effort, other deadlines, time management and the
perceived impact of assessment criteria and task difficulty.
However, many of these in the CS-context have a specific focus,
which assists our understanding of how students’ specifically
think about these attributions within their programming
experience. For example, while students’ in other discipline areas
might describe ‘effort’ as time spent on an assignment or level of
exertion into perfecting their assignment, in the CS-context this
also included level of detail on their code annotations, researching
and teaching themselves unfamiliar programming concepts to
complete assignments, as well as care in formatting code.
Additionally they also referred to deign-oriented strategies [16],
which is what we anticipated because of the nature of the course.
Unlike a previous study of first-year programming students’
narratives about performance [7], our students mentioned ‘ability’
and considered this aspect in the CS-context to include skill and
knowledge of programming languages, ability to accurately pre-
assess programming assignments and level of understanding of
CS concepts. Another example is how, in the CS-context, ‘time
management’ involves students needing to account for time to
test, de-bug and refine their code. Such findings highlight the
value in identifying discipline-specific strategies and causal
attributes so that particular processes can be examined and
improved. When teaching students how to adjust their causal
attributions, being discipline-specific about the strategy and
reasons for thinking particular ways may be more beneficial than
telling students to ‘manage their time’ or generally ‘put more
effort into tasks’. Students can also benefit by having a more in-
depth assessment of their learning processes and this may assist
students who struggle to reason about causes for outcomes.

When we examined attributes that students perceived as leading to
successful or unsuccessful outcomes and mapped them according
to being internal/external or stable/unstable on Weiner’s AT
model, we were able to identify students’ reasoning that is
somewhat problematic. As we would expect and hope, students
identified a number of causal attributions that they have control
over and are attributed to personal causes, such as creating a
design based on the marking criteria or interacting with peers on
the discussion forum. However, a number of students also
believed good outcomes were the result of uncontrollable factors,
such as luck. While these are troublesome, more problematic,
were causal attributes students perceived to lead to unsuccessful
outcomes in the external dimension, such as other external
deadlines, marking criteria and task difficulty. While literature
typically suggests that students will attribute failure to external
outcomes and positive outcomes to the self, such reasoning is an
issue because when students reason failure in programming to
external factors they are not realising their role and responsibility
in the learning process. Furthermore attributions identified in the
stable dimensions are troubling, as this causal reasoning has been
found to significantly decrease persistence in tasks [28]; a prime
concern for CS education.

In our exploration of the causal dimensions, we were able to
identify ‘successful’ strategies adopted by some students, which
they believed assisted them in overcoming obstacles that others

perceived to be beyond their control. This suggests there could be
great value in connecting problematic causal reasoning with
learning and CS-specific strategies to identify ways that students
can obstacles in programming assignments. This emphasises the
importance to also to teach students appropriate reasoning about
learning outcomes and the use of learning processes and
strategies. We map some examples in Table 3.

Table 3: Aspects of causal reasoning and possible strategies
Perception/ Behaviour Possible Intervention Strategies

Unknown causes (external/unstable)
Does not realise what factors
contribute to a particular outcome.
Difficulty in reflecting on learning
processes and identifying causal
attributions.

Encourage reflection, focusing on
specific learning processes. Discuss
possible outcomes in programming
assignments and causal attributions.
Use case studies and students identify
causal attributions of outcomes.

Unchangeable causes (internal/stable and external/stable)
Does not recognise personal role in
a particular aspects of the learning
process. May cause negative
feelings toward learning or
feelings of inability to succeed.
Behaviour may not change if
unable to recognise particular
behaviour influence outcomes.

Guide reasoning from external
causations to internal. Case studies
where students identify what might be
perceived to be external attributions
and then replace with internal/unstable
reasons. Brainstorm discipline and non-
discipline strategies to overcome
issues. Encourage responsibility.

Changeable causes (internal/ unstable)
Realises certain behaviours and
strategies influences learning
processes and identifies aspects of
behaviour or strategies that can be
adapted to improve performance.

Focus on detailed discipline-specific
strategies and encourage detail about
non-discipline and CS-specific
strategies. Identify multiple possible
options to improve performance in an
aspect and continue to self-evaluate.

5.1 Limitations and Future Research
Our research confirms that CS is a unique experience for each
student [18], not only in terms of performance, but how students
perceive their learning experiences and the causations they apply
to explain their outcomes, which influence emotions and
determine how they approach future tasks. In their essays, some
students expressed how their outcomes made them feel, however,
this was not something that was consistent across essays and we
could not measure this aspect. Nonetheless, this offers
opportunities to explore the link between CS students’ attributions
and emotions, particularly self-efficacy and motivation.
Explorations could track students across their CS experience and
determine if there are changes in causal attributions and how
emotions influence persistence and motivation in CS degrees.

Our research has raised an issue in regard to the way that we
consider the use of reflective essays in CS. While reflective essays
are implemented to encourage students to reflect on their
programming processes and learning strategies, to what extent are
we providing useful feedback to students about the effectiveness
of their strategies or the way they are reasoning? Currently, it
appears, an assumption is that the use of reflective essays is
valuable enough in itself to promote reflective thinking. However,
what we find is that, through analysing students’ causal reasoning
using the AT framework, a number of students had problematic
reasoning that could affect future performance. Students who
focused on external or stable causes of failure may not change
their behaviour to induce favourable learning outcomes because
they do not recognise their responsibility in the learning process.
Using our map of attributes, we are more easily able to identify
when students are using problematic reasoning in their essays and
offer guidance to correct this, either directly or via activities. Such
activities could involve having students share their experiences,

130

successes and problems encountered with one another so that
students who are attributing to external causes might hear
experiences of students who, despite encountering difficulties,
were able to control their outcomes through using discipline-
specific and learning strategies. This offers opportunities for CS
education research to explore if students’ behaviours do change
over time with feedback or the correction of misguided reasoning
and determine if intervention methods can have a positive impact
on programming performance and learning, as it has been found
to in other disciplines. Whilst we adopted Weiner’s earlier model,
this offers opportunities for research to develop understandings in
the light of more recent theories. Researchers in other disciplines
may apply similar content analysis to students’ reflections to
determine similarities or differences across disciplines or courses.
With the intention to encourage CS students to be self-directed
learners, we have examined causal attributions by focusing on the
changes students can make in their thinking and learning
processes. However, external causal attributions could also
provide guidance for re-designing courses to enhance learning, for
example, in terms of program assignment clarity, expectations and
making resources more visible.

6. CONCLUSION
This research has contributed to identifying non-discipline and
CS-specific causal attributions students make about their
outcomes of CS programming assignments. Our analysis reveals a
number of casual attributions that may be problematic to students’
future performance and their persistence in CS. Given that lack of
time, difficulty and motivation are some of the main reasons
students leave CS, our findings suggest there may be ways to
improve students’ CS experiences by exploring how to retrain
problematic reasoning of programming assignment outcomes by
encouraging students to control learning situations, by the use of
internal/controllable reasoning and learning and discipline-
specific strategies. This research highlights the value in
continuing to investigate how we can improve CS students’
experiences by exploring the way they perceive success and
failure in CS programming assignments.

7. REFERENCES
[1] Alderman, M. 2013. Motivation for achievement: possibilities
for teaching and learning. Taylor & Francis: London.
[2] Barker, L., McDowell, C., & Kalahar, K. 2009. Exploring
factors that influence computer science introductory course
students to persist in the major. SIGCSE Bulletin, 41(1), 153- 157.
[3] Crowe, S., Cresswell, K., Robertson, A., Huby, G., Avery, A.,
& Sheikh, A. 2011. The case study approach. BMC Medical
Research Methodology, 11(1) 100.
[4] Dewey, J. 1910. How we think. D.C. Heath & Co.: Lexington.
[5] Dunn, K., Osborne, C., & Rakes, G. 2013. It's not my fault:
understanding nursing students' causal attributions in
pathophysiology. Nurse Education Today, 33(8), 828- 833.
[6] Hanks, B., Murphy, L., Simon, B., McCauley, R., & Zander,
C. 2009. Cs1 students speak: advice for students by students. In
SIGCSE, Chattanooga, TN, 19- 23.
[7] Hawi, N. 2010. Causal attributions of success and failure made
by undergraduate students in an introductory-level computer
programming course. Computers & Education, 54(4) 1127- 1136.
[8] Haynes Stewart, T., Clifton, R., Daniels, L., Perry, R.,
Chipperfield, J., & Ruthig, J. 2011. Attributional retraining:
reducing the likelihood of failure. Social Psychology Education,
14, 75- 92.
[9] Heider, F. 1958. The psychology of interpersonal relations.
Psychology Press: New Jersey.

[10] Henry, J., Martinko, M., & Pierce, M. 1993. Attributional
style as a predictor of success in a first computer science course.
Computers in Human Behavior, 9(4), 341- 352.
[11] Kinnunen, P. 2009. Challenges of teaching and studying
programming at a university of technology - viewpoints of
students, teachers and the university. Department of Computer
Science and Engineering, Helsinki University of Technology,
Helsinki, Finland, 259.
[12] Kinnunen, P., & Malmi, L. 2006. Why students drop out CS1
course? In ICER Canterbury, UK, 97- 108.
[13] Lewis, C., Yasuhara, K., & Anderson, R. 2011. Deciding to
major in computer science: a grounded theory of students' self-
assessment of ability. In ICER, ACM, 3-10.
[14] Lister, R., Adams, E., Fitzgerald, S., Fone, W., Hamer, J.,
Lindholm, M., et al. 2004. A multi-national study of reading and
tracing skillls in novice programmers,”. SIGCSE, 36(4), 119- 150.
[15] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagen, D., Kolikant, Y., et al. 2001. A multi-national, multi-
institutional study of assessment of programming skills of
firstyear cs students. SIGCSE Bulletin, 33(4), 125- 140.
[16] Parham, J., Gugerty, L., & Stevenson, D. 2010. Empirical
evidence for the existence and uses of metacognition in computer
science problem solving. In SIGCSE, Wisconsin, ACM, 416-420.
[17] Perry, R., Hechter, F., Menec, V., & Weinberg, L. 1993.
Enhancing achievement motivation and performance in college
students: an attributional retraining perspective. Research in
Higher Education 34(6), 687- 723.
[18] Ramalingam, V., LaBelle, D., & Wiedenbeck, S. 2004. Self-
efficacy and mental models in learning to program. In ITICSE,
Leeds, UK, 171- 175.
[19] Salajan, F. D., Schönwetter, D. J., & Cleghorn, B. M. 2010.
Student and faculty inter-generational digital divide: Fact or
fiction? Computers & Education, 55(3), 1393-1403.
[20] Scott, M., & Ghinea, G. 2013. Educating programmers: a
reflection on barriers to deliberate practice. In Learning and
Teaching in STEM Disciplines The Higher Education Academy,
Birmingham, UK.
[21] Upchurch, R. L., & Sims-Knight, J. E. 1999. Reflective
essays in software engineering. In FiE, IEEE, vol. 13.
[22] VanDeGrift, T., Caruso, T., Hill, N., & Simon, S. 2011.
Experience report: getting novice programmers to THINK about
improving their software development process. In SIGCSE,
Dallas, TX, ACM, 493-498.
[23] Weiner, B. 1985. Attribution Theory. In Human Motivation
Springer New York, 275- 326.
[24] Weiner, B. 1985. An attributional theory of achievement
motivation and emotion. Psychological review, 92(4), 548- 573.
[25] Weiner, B. 1985. "Spontaneous" causal thinking.
Psychological bulletin, 97(1), 74.
[26] Weiner, B. 1986. Attribution, emotion, and action. Handbook
of motivation and cognition: Foundations of social behavior, 1,
281- 312.
[27] Weiner, B. 2010. The development of an attribution-based
theory of motivation: a history of ideas. Educational Psychologist
45(1), 28- 36.
[28] Wilson, B. 2002. A study of factors promoting success in
computer science including gender differences. Computer Science
Education, 12(1-2), 141- 164.
[29] Zanial, Z. 2007. Case study as a research method. Jurnal
Kemanusiaan, 9, 1- 6.
[30] Zimmerman, B. 1989. A social cognitive view of self-
regulated academic learning. Journal of Educational Pyschology
81(3), 329- 339.

131

Social Media in Everyday Learning

How Facebook Supports Informal Learning Among Young Adults in South Africa

Tina Klomsri
Stockholm University

DSV
Kista, Sweden

tinaklomsri@gmail.com

Linn Grebäck
Stockholm University

DSV
Kista, Sweden

linngreback@gmail.com

Matti Tedre
Stockholm University

DSV
Kista, Sweden

first.last@acm.org

ABSTRACT
Social media has in the recent years become a part of peo-
ple’s daily lives, and with it has come a new way to commu-
nicate and interact. The functions of social media in formal
and non-formal learning are well studied, but much less at-
tention has been paid to their role in informal learning. In
South Africa the dominant social networking service is Face-
book, which crosses many digital divides in the country.
This study explored, through semi-structured interviews,
the use patterns of Facebook among young, low-educated
South Africans adults, and analyzed, using grounded theory,
the potential of those use patterns for informal learning. The
results show that the social interactions on Facebook sup-
port informal learning and personal development. Facebook
puts the individual and the social interactions in focus with-
out the constraints of time, objectives, or curricula. Young
adults are daily exposed to various kind of information on
Facebook, while maintaining control over their own Face-
book activities. Self-directed learning and intrinsic moti-
vation promote continuous discovery of new knowledge, yet
sometimes the educational benefits are undermined by a lack
of critical attitude towards information in social networks.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in
Education; K.3.1 [Computers and Education]: Com-
puter Uses in Education—Collaborative learning, distance
learning

General Terms
Human Factors

Keywords
Social media, Facebook, informal learning, social interac-
tions, South Africa, ICT4D, self-directed learning, intrinsic
motivation

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
Koli Calling ’13, November 14–17 2013, Koli, Finland
ACM 978-1-4503-2482-3/13/11.
http://dx.doi.org/10.1145/2526968.2526983

Acknowledgments
This paper is based on the B.Sc. thesis “Social Media in Ev-
eryday Learning: A Qualitative Study about What Use Pat-
terns of Facebook Support Informal Learning among Young
Adults in South Africa,” Stockholm University, Department
of Computer and Systems Sciences (DSV), by Tina Klomsri
and Linn Grebäck [15]. The authors would like to thank
prof. Henrik Hansson, the thesis co-supervisor.

1. INTRODUCTION
The role of theoretical and formal knowledge has steadily

strengthened throughout the human history. For the past
few hundred years, knowledge gained by formal and empiri-
cal methods has become the pinnacle of knowledge construc-
tion (cf. [25, p.19]). In terms of learning, formal learning is
highly valued in society, while informal learning is often seen
as less valuable [8]. But the whole picture of learning is much
broader. The diffusion of modern information and commu-
nication technology (ICT) has changed the way people live,
learn, and communicate, and the effects of those changes
to learning are not yet fully understood [8]. Along with the
Web 2.0, the increased use of social networking sites, such as
Facebook, has made it possible for large amounts of informa-
tion to be exchanged and spread globally at no time. That
new media society has created new conditions for informal
learning [8] and for the lifelong learning process.

While the changes brought by modern ICT are most wide-
spread in wealthy countries, the changes are dramatically
seen in developing and emerging economies. In South Africa,
for instance there are many ongoing initiatives made by the
South African government to increase access to education
for the entire population. One of the initiatives is to reduce
unequal access to infrastructure, facilities, and learning re-
sources within the country [32]. The South African govern-
ment hopes that information and communication technology
will “play an essential role in addressing societal challenges -
for instance, universal education, training, health, inclusion,
security and environmental management” [27].

The modes in which ICT already addresses the South
African government’s aspirations are many, and one of the
promising strands of research has focused on the explicit
use of social media for learning. Much research on learn-
ing through social media has focused on the organized, for-
malized, and directed aspects of learning. This study fo-
cused on the less studied, informal aspects of learning, and it
asked, “Which use patterns (if any) of Facebook among low-
educated, South African young adults are potentially benefi-
cial for informal learning?”.

132

1.1 Research Context
This study was situated in Johannesburg in the Gaut-

eng province of South Africa. The Gauteng province has
the highest population among South Africa’s provinces (12.2
million people, or 23.7% of total population) even though it
is the smallest province (16 963 km2) [29]. When it comes
to education in South Africa, statistics show that 8.6% of
people aged 20 and above have never attended any kind of
formal education [28], which is reflected in the literacy rate
of 89% [32]. Of people aged 20 years and above, 33.9% have
attended some secondary education and 28.9% have finished
the 12th grade. Only 11.8% of people 20 years and above
have attended tertiary education [28].

The most common piece of modern ICT equipment used
among South Africans is the mobile phone. Among all the
mobile phone owners, young people have embraced technol-
ogy the fastest: Already in 2007 a survey study found that
some 72% of the young people in South Africa, aged 15–
24 years, owned a cell phone [1]. Of those who had access
to Internet, 16.3% accessed it via cellphone. Concerning
the uses of Internet, a 2009 market research study showed
that social networking was one of the main internet activi-
ties among South Africans (74% of users) [31]. When asked
which social network sites they used, the study showed that
Facebook was the leading social network site (82% of social
network users). Social network sites are usually free of cost
and anyone with an e-mail account can become a member.
The same research study [31] showed that main activities on
social network sites were as follows: 75% sending messages
to people, 62% updating status, and 61% uploading photos
or videos. A lot of information is constantly distributed via
different social network platforms.

The report also showed that social network use among a
representative sample of 401 South Africans aged 16 years
and older was 74% [31]. But as Kreutzer [16, p.6] pointed
out, there is still little research on how South Africans“choose
to use mobile phones to access information or entertainment
media or to create and distribute their own media.” There
is a need for a qualitative study, which investigates how
young, low educated South Africans use social network sites
to achieve personal goals and interests. This is of value in
terms of learning insofar as it sheds light on those processes
of learning that happen outside formal education settings.
The availability of social networking can work as a cheap and
efficient way to learn and exchange information by “virtu-
ally meeting people from other age-groups and socio-cultural
backgrounds, linking to experts, researchers or practitioners
in a certain field of study and thus opening up alternative
channels for gaining knowledge and enhancing skills” [24].

1.2 Three Levels of Formalization
One common conception of learning today is that which

happens in institutions like schools and universities [6, p.217].
But that is but one view of learning. One can take a broader
look at learning, and discuss learning in three different terms,
based on their level of formalization: formal learning, non-
formal learning, and informal learning [34].

Formal learning
Formal learning corresponds to an institutionalized kind of
learning that is established and accepted in society, and
that typically takes place in schools, universities, and other
educational institutions [34]. It is rule-bound and bureau-

cratic, follows a rigid curriculum and often confers a degree
or diploma. The knowledge gained from formal learning is
often focused on propositional and decontextualized knowl-
edge, gained through one-way communication from teacher
to student (although modern pedagogical views often chal-
lenge that process), and organized and taught by profes-
sional teachers or tutors [22, p.19].

Non-formal learning
Non-formal learning is learning that occurs in situations
with a lower level of formality, but with a plan and ob-
jectives for learning. Such situations include, for example,
study circles and homework, and exist outside of any for-
mal institution [22, p.20]. Such study environments for non-
formal learning are typically minimally guided (which is not
an optimal choice for novice learners [14]) and offer little
affective support [2].

Informal learning
The learning that takes place in everyday life is called in-
formal learning. Informal learning is personal and spon-
taneous, without structure, and can be either conscious or
unconscious [22, 34]. In this type of learning, the individual
is not always aware of the learning nature of the situation.
For example, if a person visits a museum on his/her own
initiative, and does not have to meet any explicit learning
objectives, then the situation counts as informal education
[34]. Informal learning is often contextualized and takes
place where an individual can make immediate use of the
knowledge obtained (e.g., [17]).

Today a lot of information is digital and available through
modern ICT equipment, and hence the context of informal
learning can also be virtual, physical, or a blend between
the two. For example, a person can learn something by
watching a video online and make use of the knowledge im-
mediately in the real world context. As another example,
a farm fair visitor may acquire more information about the
products through mobile Internet. Contextualized learning
contributes to lifelong learning, as understanding the con-
text in which the learning takes place provides scaffolding
that helps one to remember what was learnt and to pass
on the knowledge [23, pp.30–31]. Since informal learning
is controlled by individuals themselves, it has the great ad-
vantage of supporting intrinsic motivation (see [22, p.31],
[17, 5]). Formal, non-formal, and informal learning are nei-
ther exclusive categories nor hierarchical levels of ‘better’
and ‘worse.’ The different kinds of learning can supplement
each other so that they meet the needs of individuals and
the society [34].

2. PREVIOUS RESEARCH
Learning through social networks is a well-researched topic.

A lot of the literature is about introducing social networks
and interactive media in institutional establishments. Ex-
amples include, for instance, Bull et al.’s [8] study on con-
necting informal and formal learning experiences in social
media, and Redecker et al.’s [24] survey on how social net-
working can be, and is used to gain knowledge. Many re-
search studies are about the different ways in which the in-
teractive and social aspects in digital media can promote
learning, and should therefore be introduced in formal edu-
cation institutions.

133

Why social networks are popular
Human is by nature a social being, and socializing with oth-
ers and communicating with the world around us is vital for
our learning process [11, pp.33–34]. Social networks answer
to some basic human needs, such as wanting to be included
in a group and a context, as well as to understand one’s
place in the world and to reflect on how others see us [23,
p.23]. The social nature of humans explains the ways in
which people interact and behave in social networks. From
a socio-cultural perspective, the sense of belonging in a so-
cial context is a driving force for learning, and relates to
personal growth. This perspective suggests that interaction
in social contexts offers different ways of development of per-
sonal identity [23, p.28].

Social networking in formal education
Social networks offer a new way to communicate, access
and exchange information, and realize personal goals [24].
Physical distance, time and even language barriers no longer
limit people from communicating and exchanging ideas. So-
cial networking allows users to communicate, interact, and
create their own content and share it with whomever they
choose [4, p.128]. Social networks and informal learning are
linked together, because social networks are not constrained
by specific learning objectives, curricula, or deadlines [8].
In Europe, one study showed that social networking offers
new opportunities to enhance innovation and creativity by
producing one’s own digital materials, involve learners more
actively in their own learning process, “actively support life-
long learning by offering accessible, flexible and dynamic
learning environments that can complement and supplement
initial training” [24], reduce inequalities by increasing access
to information, and reinforce active citizenship.

Previous research studies have shown that some of the
most common problems in formal education settings are
lack of motivation, failure to meet the demands derived
from formal education, and shallow learning process (such

as memorizing) [17, 22]. Bull et al. [8] and Åkerlund [23]
suggested that introducing non-formal systems, such as so-
cial networks, could provide new opportunities for innova-
tion and modernizing education, which could solve some of
the problems above. Bull et al. pointed out that by linking
students’ attention with academic content exclusive of aca-
demic constraints such as deadlines and curricula, students
can learn at their own pace and choose the most appealing
topics [8]. That can be done with the use of social networks.
Such linking of media, social interaction, and technology
is well explored in education, and through social networks
such conception can be more multifaceted and relevant and
therefore more interesting for the students [11].

There are also various barriers for introducing social net-
works into formal education settings. Unlike individual teach-
ers, formal education systems are notoriously slow to adopt
changes [4, p.131]. Yet, also individual teachers would be re-
quired to update their ICT skills regularly and rethink their
role to “act as guides and mentors, enabling and facilitating
self-regulated learning processes” [24] (see also [26, 21]). It
has been argued that in formal education settings there is a
lack of clear definitions of terms such as formal, non-formal,
and informal learning, which makes it difficult to establish
basic non-formal or informal features within schools and uni-
versities [34]. There again, it is exactly the lack of any in-

stitutional characteristics that define informal learning.

Critical and reflective media consumption
There are different forms of knowledge and information, but
for it to be valued, it has to be considered in critical ways [8].
Especially adolescents sometimes lack the attitude to crit-
ically evaluate the quality, veritableness, and authenticity
of content in digital media [24]. In a many-to-many media,
such as social networks, misinformation and disinformation
abound—some of it misleading, some downright dangerous.
To overcome this, teachers need to supply students with nec-
essary skills to critically use social networks [24].

Social networks and innovation
Redecker et al. [24] listed ‘four C:s’ of the innovation-sup-
porting character of social networks. Firstly, content “sup-
ports learning and professional development in a lifelong
learning continuum, contributes to equity and inclusion and
puts pressure on education and training institutions to im-
prove the quality and availability of their learning material”
[24, p.8]. Second, by creating and publishing digital content,
learners can gain new knowledge along the way. This con-
tributes to a vast amount of user-generated content, which
other learners and teachers can take advantage of. Third,
connecting with other learners and exchanging knowledge
in different fields of interest supports innovation. Fourth,
collaboration means the possibility for teachers and learners
to work together, “pooling resources and gathering the ex-
pertise and potential of a group of people committed to a
common objective” [24, p.8].

Social networks and inequality
There are many potential benefits arising with the intro-
duction of social networks, but it is important to keep in
mind that various faces of the digital divide still remain. It
has been argued that the Internet and ICT may have in-
creased, not decreased, inequality between the rich and the
poor, by providing the best technological facilities only to
those already in a privileged position in society [16, 20]. In
South Africa, access to the web has only been available to
the wealthier part of the population. Only recently, the In-
ternet and ICT in general have become more available to
the rest of the population [16].

3. METHODOLOGY
Due to this study’s exploratory stance and the paucity

of earlier research on the topic in this context, this study
adopted the grounded theory strategy with interviews as
the data collection method [9, p.63]. The research ques-
tion of this study sought for use patterns that are poten-
tially beneficial for informal learning, insofar as there exist
any. To find these, semi-structured interviews were arranged
to gather qualitative data about young adults’ Facebook
habits, thoughts, opinions, and use patterns. Interviews
are well suited for gathering personal opinions, feelings, and
views of a certain matter, as they are not constrained in the
way questionnaires are [33, p.154].

The main reason for choosing semi-structured interviews
instead of other types of interviews was that they are flexible
and generate personal answers from respondents [7, p.45].
Respondents expressed their answers in their own ways (there
were no predetermined answers to choose from) while the

134

interviewer could ask follow-up questions on interesting top-
ics. During the interviews, the interviewers had a guide
to support them by providing a list of the most important
themes to discuss [7]. This ensured that each important
question was discussed and that the interviews did not get
sidetracked. The same guidelines were used for every inter-
view, and the actual interviews were preceded by three pilot
interviews followed by refining of the guidelines.

Selection of Informants
In qualitative research it is very common among researchers
to pursue purposive sampling [9, p.127]. Sampling is done
in accordance with the research questions and the overall
purpose of the research. When the aim of this study is to
explore, not to generalize, the researcher can focus the sam-
ple on the entities (such as individuals) of interest. This
study set the sampling frame using a type of purposive sam-
pling called theoretical sampling [9, p.127], which is closely
related to grounded theory methods of analysis. Theoretical
sampling considers what is relevant and meaningful for the
theory and selects each subsequent participant according to
the information from the previous coding processes, so that
the theoretical ideas can be validated [7, pp.394–395].

Considering the research question and focus of this study,
the informants were young adults between 18 and 29 years
old, as they belong to the group of active Facebook users.
The informants were low-educated (no tertiary education)
young adults from a less affluent suburb of Johannesburg.
The interviewees that fulfilled the above mentioned criteria
were arbitrarily selected in the suburb, based on the sam-
pling frame, and asked if they want to participate in the
study. This is called convenience sampling and facilitates
the collection of data. Convenience sampling makes it im-
possible to generalize the research result since there is no
way to know what the sample is representative of. When
a suitable person was interested in participating in the in-
terview, a location and time for the interview were agreed
on. The collection of data ended when new data no longer
provided new information and no new categories were iden-
tified in the coding process. This is called data saturation
[18], and the saturation point was reached after twelve in-
terviews, which is relatively common (typically 5–25 in case
of phenomenology [9, p.128] and case studies [19]).

Data Collection Procedure
The interviews were conducted face-to-face. The reason not
to interview via phone or online communication tools (such
as Skype or social media) was that respondents have proven
to be more likely to cancel an interview that is not carried
out face to face, and there is always the risk of technical
problems [7, p.433]. Also gestures and body language of the
respondent will go missing, which would be a pity since it
can provide a better understanding of answers [7].

Before every interview, the interviewers introduced them-
selves to the interviewees, informed them about the purpose
of the study, and requested their informed consent. By the
end of every interview, the interviewers thanked the respon-
dents for their participation. The interviews were conducted
in an undisturbed environment, with only the interviewers
and interviewee present. This way the interviewee could
speak freely and without worrying for anyone to hear or get-
ting interrupted. Interviewers strove for objectivity and neu-
trality when interviewing by, for instance, not asking leading

questions [7, p.420] [12, p.54].
Three pilot interviews were the basis for the formulation

of the final interview questions. The interviewers used the
same guideline for every respondent, and made sure all im-
portant questions and topics were discussed. Everything of
importance that was said during the interview was recorded
with a digital recorder on a mobile phone. After an inter-
view was done, it was transcribed and analyzed as soon as
possible, before conducting the next interview. This gave
the opportunity to discuss every interview thoroughly while
the memory was still fresh and to reflect on new categories
and codes identified [33, pp.160–161].

The two authors interviewed one respondent at a time.
One of the authors had the role of the interviewer, while the
other author took notes. The average time of the interviews
was around 15 minutes. All of the interviews were recorded
and later transcribed. All respondents participated volun-
tarily in the study and without being compensated. Before
every interview, the authors socialized with the respondents
to make the respondents feel comfortable before beginning
the interview.

The respondents were also asked for permission to be
recorded. The interviewer followed an interview guide dur-
ing the interview but since it the interviews were semi-struc-
tured, the interview guide was not followed strictly. The first
questions in the interview were about the respondents’ back-
ground, such as age, education, occupation, and why they
joined Facebook. This was to get to know the respondents
better and to be able to put their answers in a proper con-
text. Next questions were about the social aspects of Face-
book. Those questions asked how the respondents interact
with other Facebook users. The respondents’ answers on
these questions described how they used Facebook to social-
ize and connect with other members of Facebook, as learning
is a part of a social process. The last theme of the interview
was about informal learning and contained questions that
were direct and therefore minimized the chance of misinter-
pretation in the coding of data.

Research Ethics
Standard research ethics were followed as described in Bry-
man’s four guidelines [7, pp.131–132], and the study was not
concerned with very sensitive matters. Firstly, interviewees
were provided with information about the research aims. It
was made clear that participation is voluntary and that the
data collected will only be used for research purposes. Sec-
ondly, informed consent was recorded, and since the study
did not involve minors, the individuals had the right to de-
cide whether or not they wanted to participate in the study.
Thirdly, the respondents were guaranteed anonymity, and
they were informed that the interview recording will be pro-
tected from unauthorized access. Fourthly, the material the
respondents provided will not be used for any other purposes
than this study.

Data Analysis Procedure
Methodologists recommend grounded theory strategy for qual-
itative studies where the intent is to go beyond descrip-
tion and develop an abstract schema for future action [9,
p.63],[30]. Hence, grounded theory was chosen as data anal-
ysis method. One of the main tasks in grounded theory is to
code the analyzed data by identifying the parts that could be
of theoretical or practical significance for the research. The

135

data works as indicators of behaviors and events. By finding
common and deviant indicators and organizing them, the re-
searcher is able to separate, label and compile the data as
a first step to generate a theory [7, p.514]. This process is
performed continuously.

Strauss and Corbin [30] described three stages of coding
data. The first step is open coding, which generates indica-
tors by separating, analyzing, comparing, and categorizing
data. Identified indicators are grouped and divided into cat-
egories. The second step is axial coding, which is described
as “a set of procedures whereby data are put back together
in new ways after open coding, by making connections be-
tween categories” [30]. During this step the codes are put
into context, giving them a meaning. The final step is called
selective coding. By relating the categories to each other,
the researcher identifies a core variable, which functions as
a framework where all categories are integrated. In this
study, those principles worked as a base and guideline dur-
ing the analysis process of the empirical data. To assist the
memory, notes and memos were used as a reminder of what
different indicators, groups, and categorizations meant. A
case-based memo was written down directly after each in-
terview consisting of the researchers’ impressions, thoughts,
and interpretations of what was said during the interview.

4. RESULTS AND DISCUSSION
The open coding process generated 19 indicators that were

analyzed and grouped into four categories: Personal devel-
opment, Social interactions, Simplifying life, and Privacy
issues. The first row of Table 1 presents each of the four
categories, and after the first row, each column presents the
indicators grouped under that particular category. Privacy
issues are their own box to save space because they were
smallest, only one-item category.

Table 1: Nineteen Indicators and Four Categories
Personal
Development

Social
Interactions

Simplifying
Life

Channel for ex-
pression

Asking Easy way to com-
municate

Create Direct or personal
information

Keeping updated

Critical view on
information

Encouragement
and support

Saving time

Identity Exchange of in-
formation

Sharing informa-
tion

Independent in-
formation seeking

Group communi-
cation

Personal goals
Personal interests
Playing games Privacy Issues
Using knowledge Facebook privacy

The indicators belonging to the category Personal devel-
opment were focused on the respondents’ Facebook activi-
ties that could lead to new knowledge or developed skills.
Social interactions arose from the data as a category be-
cause many of the indicators directly referred to some type
of social interaction, such as asking or exchange of infor-
mation. The indicators included in the category Simplifying
life were grouped together as they are all about aspects of
Facebook that simplify the respondents’ lives in some way,

such as by saving time, by helping the respondents to keep
updated with different people and things, and by providing
an easy way to communicate. Privacy issues was defined
as a category even though it consists of only one indicator,
Facebook privacy. This group is about privacy and identity
theft problems that the respondents experienced with Face-
book. The indicator Facebook privacy did not fit into any of
the other three categories but was still important enough to
be left in the analysis.

The core category identified in the final part of the coding
process was social interactions, since all of the indicators
are products of social interactions on Facebook. Even the
indicators that are not directly about social interactions are
still related to it, as all content and activities on Facebook
are social and connect everything on the website.

Personal development
“I want to know about people’s views especially
when you put up some comment. When you put
something on Facebook you have to view some
people’s comment and what they think of stuff.”
(Male, 28 years old)

Just like face-to-face interactions, social networks like Face-
book are places where people express themselves and form
an identity by interacting with others. The respondents are
aware that the information they post on Facebook will be
seen and evaluated by others. Their Facebook activities can
therefore receive both positive and negative feedback, as well
as start discussions where the respondents might have to ex-
plain themselves or consider other perspectives on a matter.
By exchanging views and communicating on Facebook, the
respondents learn new things about their world and gained
informal knowledge. Those respondents who ask for advice
on Facebook, gain even more informal knowledge, since it is
easier to gain a deeper understanding when the knowledge
is contextualized [23]. As one respondent explained how he
learned surfing techniques by watching videos posted by his
Facebook friends: ”They are pro surfers so they are better
than myself so I look it up to just see how they are doing
everything, you know. What’s new? What’s old? Keep up
with the surfing world”.

Personal goals and personal interests are important as-
pects of informal learning, and many examples of this can
be found in the respondents’ Facebook use. The interviews
revealed that the knowledge the respondents gain is linked
with personal interests and personal goals, since the respon-
dents pay attention to those posts they find interesting on
their newsfeed and groups, and manage their Facebook so
they get updates on topics that interest them. Things that
the respondents mentioned as interesting was either a per-
sonal hobby, or things like: ”a cool quote or a nice picture”,
”something useful”, ”funny stuff” and ”what’s going on in the
world, what’s new”. When one respondent had to answer
what he found interesting on newsfeed, he answered: ”nice
photos, nice clothes, what’s happening, who bought a car,
who did this and this, that catches my attention. This other
group, people post their photos and by the end of the day they
chose who has the best photo. Then people will comment on
it. Apart from that I check news”. When learning occurs
as a result of personal interests or to reach personal goals,
learners are more likely to remember what they have learnt
[23]. According to the respondents, Facebook is a favorable
platform for sharing digital content (both self-created and

136

the content found on the Internet) since it generates useful
and/or encouraging feedback from their Facebook friends.
Positive feedback from Facebook friends works as an incen-
tive to the respondents to share more information, and some-
times even to do more activities in real life. Feedback also
provides a channel for increased critical attitude towards
media by one’s peers.

Playing games is something the respondents do on their
own initiative and is connected with personal interests. De-
pending on the game, gaming activities can be very so-
cial when Facebook friends play with or against each other.
Some games are connected to real-life events and keep the re-
spondents updated with what is going on in real time. Since
playing games is something the respondents find a lot of fun
and interesting, they are attentive and motivated while do-
ing it and the chance of learning is high. Sometimes certain
knowledge or skills are required in order to beat the game,
which motivates the respondents to achieve what is required.
This means that the respondents, while playing games, can
increase their motor skills. One respondent explained that
by playing football games she learns strategy skills, but since
she is having so much fun while doing so she does not realize
how much she actually learns.

Some of the information that the respondents get exposed
to on Facebook leads to a critical view on information and
independent information seeking—two things that in turn
contribute to personal development. When the respondents
take a critical view on information they read or watch, they
tend to seek further information on the search engine Google:
”if I find something that seems you know a bit unlikely I
would ask if it’s true or Google it”. Often the respondents go
back to comment on the topic after finding out more about
it, and by doing so they join a social process of exchanging
and sharing knowledge.

The respondents engage in a broad variety of cognitive ac-
tivities and knowledge-seeking in Facebook. By using Face-
book, the respondents can gain knowledge either sponta-
neously, by for example scrolling through the newsfeed, or
consciously by searching for certain information. In both
cases, the knowledge gained can be of use for the respon-
dents, either in the virtual or the real world. This is es-
pecially true in the latter case, as many of the respondents
use Facebook when they need advice or information that
can help them with something practical. One respondent
explained: ”sometimes I ask for advice about studying, like
when I’m in my room and I just can’t sit down and study.
Then I asked my friends on Facebook, ”what should I do, how
can I study?”. They told me to not sit in the couch, sit on
something hard, like on a bench. Don’t be comfortable, sit
straight, then you can get things done”. Another respondent
said: ”if I have a problem, if I’m in trouble, I mismanage my
finances, I always got a lot of older friends who I can turn
to and ask them in their inbox”. This is a good example of
how informal learning works as it takes place in an everyday
situation and derives from the respondents’ own personal in-
terests and needs. Even though informal learning occurs by,
for instance, reading a book or visiting a museum, it is of-
ten a result of social interactions, which today are occurring
more and more within virtual spaces. Social interactions
of all kinds are the core category that brings together all
aspects of Facebook.

Social interactions
“We have this group that we have, where we have
goals that are under the group. So basically it
encourages us, young ladies, to grow up. In a
way like with manners and respect and things like
that. It helps us to devote to something and you
know learn that. It can encourage them, they can
share with their friends also”
(Female, 26 years old)

This category is a core category and it resonates with the
theory that learning is a social process. By using commu-
nication as the main learning and teaching tool, knowledge
exchange can occur [11, 13, 25, 17]. Facebook is a social
network that the respondents use to communicate with their
friends and family. This is the main reason for the respon-
dents to create a Facebook account and to continue using it
for many years. During the interviews other important as-
pects of socializing were discussed, like the exchange of infor-
mation between Facebook users as a way to gain knowledge.
By reading other Facebook friends’ posts and comments, the
respondents can learn new things about their world, whether
the learning is conscious or not. The indicators ‘asking’, ‘ex-
change of information’ and ‘group communication’ are all
about how the respondents gain knowledge by socializing
with others, in a context where they are active at their own
terms. This shows how Facebook is a platform for informal
learning, which is personal and spontaneous and puts the
individual in focus [34].

The indicators ‘encouragement and support’ and ‘direct/
personal information’ can also be related to the informal
learning process, as they affect how the respondents inter-
act and learn on Facebook. Arroyo et al. [3, p.2] wrote
that “feedback plays a fundamental role in the educational
process” and the results showed that feedback, such as com-
ments and ‘likes,’ are encouraging for the respondents and
sometimes make them more active users. Encouragement
can be given directly from one person to another, or within
a group of people, or it can be given as a motivational sta-
tus update that is not necessarily directed towards anyone
special. Two respondents mentioned that they are members
and administrators of groups where people who are facing
difficulties help and encourage each other. One of the re-
spondents explained the interaction within the group: ”ev-
eryday we get to share like two blogs, so I’ll share two blogs
and they’ll share two blogs. Who ever read the blogs can com-
ment on it. Or if they find it interesting or if they find that
it will help them with whatever they are facing, like we have
a topic that we post on so”. Another respondent continued
on the same topic: ”people they want interesting stories, so
some of the stories they don’t get much comments. Funeral
stories, they got a lot of comments, and a lot of condolences.
Funny stories, they got like 100+ comments, people are com-
menting and commenting.” Group communication is a social
interaction towards and between many people, and it sup-
ports informal learning by providing people with information
that they personally find interesting.

Furthermore, the respondents are more likely to engage
with information on Facebook that is directed personally to
them, which happens in social interactions and not by just
checking the newsfeed. By using the search engine Google
and Facebook’s built-in translation function, the respon-
dents take part in information exchange posted in a foreign

137

language. This confirms the suggestion that social network-
ing is no longer strictly limited by language barriers, time,
or physical distance [4]. However, there were differences as
to what kind of information the respondents chose to expose
themselves to and what the society in which the respondents
live in consider being valuable.

Simplifying life
“It (Facebook) helps you to get in contact with a
lot of people outside the country, inside the coun-
try, make friends and a lot other stuff. A friend
of mine, he went to the UK and with the commu-
nication and stuff, I think Facebook is the easiest
way to communicate with him. It’s very easy,
very cheap, instead of making calls and other
stuff. You can also see him physical with pic-
tures and other stuff ”
(Male, 29 years old)

The indicators belonging to this group are about how the
respondents use Facebook as a means to simplify their lives.
‘Easy way to communicate’ is about accessibility and avail-
ability of Facebook. Many respondents expressed that more
and more people they know are joining Facebook and since
it is free, it has become a generic and preferred way to com-
municate: ”... it’s the best way to communicate with fam-
ily members, you know, socialize, connect with other people.
Since I live in South Africa and my family is in Zimbabwe.
And I have friends, old schoolmates, we need to connect so,
that’s why I joined Facebook”. In order to join Facebook one
must only be over the age of 13, have an Internet connec-
tion, and have a valid email address. Internet access is still
unequally distributed among South Africans and for many
respondents, daily Facebook use is not always possible. The
respondents who have a high-speed Internet access tend to
check their Facebook page more often, which means that
they can take part of more information exchange and com-
municate more often.

The use of Facebook is an optional and spontaneous ac-
tivity, which the respondents mainly use to keep updated
with friends and/or family, groups, games, events, and so
on. Even though a few respondents did not have high-speed
Internet access, they would find a way to log on to Face-
book: ”when I quit work, or on my day off, I go to an In-
ternet cafe and go on Facebook for maybe four hours. And
then, in those four hours, I can learn something new, I can
check if I missed something, what is new. So in that way it
simplifies my life”. One respondent expressed that she knew
a lot of people who could not operate a computer but knew
how to use Facebook because “it is so much fun.” When
an everyday activity is fun and of personal interest, it is
more likely that the learner will gain a deeper understand-
ing of the subject [10]. The informal knowledge gained from
different Facebook activities can later on be consciously or
unconsciously applied to other situations—including a sort
of informal introduction to“21st Century skills”or ICT liter-
acy. Facebook offers the respondents a non-traditional and
immediate way for communicating, sharing, creating, and
keeping updated with people and things while having fun.
The activities on Facebook serve as a way to fulfill the hu-
man needs of belonging to a group, situating oneself within
a context, and identifying oneself [23].

Since humans are social beings, sharing information—be
it face-to-face or virtual—is a part of the socializing process.

As the amount of available information increases in the In-
ternet, the respondents can obtain more information and
share it with many people. This does not necessarily mean
that the information the respondents share or understand
is considered valuable according to the norms of society, or
highly appreciated within formal education settings, since
informal learning is devoid of objectives and curricula [34].
The interviews revealed a major problem, too: the infor-
mation posted on Facebook is most of the time not viewed
critically. This could contribute to disinformation, misinfor-
mation, rumors, and it might conduce inequality.

The respondents use Facebook mainly as a way to keep
updated with things like different people, organizations, and
celebrities, and by doing so Facebook saves the respondents’
time and financial resources since Facebook helps gather all
information updates in one place: ”I follow Arsenal, that’s
my team, so there is this Arsenal fan page. But I’m not re-
ally into it, I just simply get it on my newsfeed, because I
like the page. Like if Arsenal is playing, they make updates.
When I’m busy I can just quickly check, ”Arsenal is lead-
ing” or ”Arsenal is losing”, then I know. The other thing
is what’s happening in the world, keeping updated. I did
not know, but I saw it on Facebook, they were launching this
new Blackberry phone”. The amount of time the respondents
spend on Facebook varies, as does the amount of information
perceived by the respondents everyday. What the respon-
dents do with the information varies too, but consciously
or not, they are participating in a wealth of information-
sharing through Facebook. By socially engaging in infor-
mation flows, no matter if it is about sharing knowledge
through digital text, photos, videos, or by reading other
people’s status updates, the respondents are participating
in a spontaneous way to learn—namely informal learning
[22, 34].

Privacy issues
“It (Facebook) simplifies my life a lot. It can also
be complicated with the privacy issues, when you
have certain friends on Facebook that you don’t
want to see some things, or your family. So it
can be restricting, so, if they made like separate
functions... I know you get separate lists but it’s
so difficult to add people and then you want them
to see some things and you want them to not see
some things. So it’s a bit complicated, but really,
it does simplify my life, it actually makes social-
izing so much easier.”
(Female, 27 years old)

Many respondents experienced that sharing information
can be restrictive as they have to be conscious about what
information their Facebook friends are allowed to see. This
leads to information awareness among the respondents since
they do not want to offend any of their Facebook friends
with their posts, or share too much information with certain
friends or family members. A consequence of this is that
informal learning process can be affected negatively since the
young adults may feel inhibited by other Facebook members.

4.1 The Connection Between Categories
The interviews made clear that the information and activ-

ities on Facebook are not limited to Facebook only. There is
a constant flow of information between Facebook and other

138

websites as well as the outside world of the respondents.
Facebook forms a network that connects people all over the
world by linking their accounts together, and expands as
people interact in more than one network of friends. By
sharing each other’s posts, joining and inviting each other
to groups, events and other social phenomena, the social in-
teractions are very much unlimited and connect all content
on Facebook in a vast spider web. Every day millions of
activities take place on Facebook; meetings between old and
new friends to keep each other updated on what is going on
in their lives. Information updates from different pages are
shared with millions of people, who in turn interact with
the posts. Facebook is a network where all aspects of social
interactions exist and come together. It works as a news
channel, communication tool, meeting place, photo album,
forum for discussions, billboard for advertising, spare time
activity, a channel to express personal opinions, spreading
awareness, and so on. The common denominator for all ac-
tivities on Facebook is that it is social, and that was also the
crucial element tying together the four categories identified
in this study.

5. CONCLUSIONS
The social interactions on Facebook happen through var-

ious kinds of information exchange. Facebook is a social
networking site that puts their individuals and their social
interactions in focus, which is an ideal setting for informal
learning. The interviewed young adults in Johannesburg re-
ported using Facebook spontaneously and often without be-
ing conscious of the knowledge gained (such as increased ICT
literacy and reading skills) when using Facebook, mainly
because it is a fun activity. As active Facebook users, the
interviewees are exposed to a large amount of diverse in-
formation, but at the same time they are allowed to be in
control over their own activities on Facebook, which intrin-
sically motivates intake of information and knowledge.

Since Facebook is all about sharing, the interviewed young
adults are exposed to a rich flow of information everyday,
and on every post there is a possibility to socially inter-
act by giving feedback. These activities allow the intervie-
wees to show support, encourage others, and express their
own thoughts on other members’ posts. This helps them
to develop as persons, as they get other people’s views and
opinions on different matters through their own and other
people’s posts. By watching, listening, and reading through
posts and comments, the interviewees participate in an in-
formal learning process, and gain new perspectives of the
world by communicating with their Facebook friends with
different backgrounds, cultures, and languages.

Interviewees reported that Facebook gives them a chance
to express their personal opinions and question different
matters, which empowers them as active producers and crit-
ics of information, not only passive consumers. There are no
demands or objectives when using Facebook—it is a social
networking site used to socialize and enjoy. This is why the
interviewees found Facebook so appealing. Posts on Face-
book are more likely to catch the interviewees’ attention
simply because the information is directly relevant to their
interests, and they can engage in discussions without feeling
pressure like in formal education settings.

The results indicate that Facebook supports informal learn-
ing in the following ways: firstly, the multiple ways to share
different kind of digital content to one and/or many recip-

ients encourage young adults to explore the world through
the digital posts made by themselves and/or their peers.
Facebook allows the young adults to be in control over their
own Facebook usage (e.g. by customizing) which makes it
an efficient tool to reach personal goals and to meet personal
interests, without having to fulfill any objective or follow a
strict curricula. Hence, every single interaction and discov-
ery of new knowledge on Facebook come from the young
adults’ intrinsic motivation and these are the characteristics
that support informal learning.

Secondly, the interviews showed that active Facebook us-
age (unlike passively viewing information without giving
or receiving feedback) is essential to the learning process
as feedback provides information, encouragement, support,
and sometimes forces the respondents to consider alterna-
tive perspectives on different matters. Thirdly, the social
interactions on Facebook are not limited by language, time,
or physical distance. The members of Facebook are from
different age-groups, socio-, cultural-, and economical back-
ground, which makes Facebook a unique place where people
can virtually break barriers, meet, exchange information and
learn. A problem connected to the large amount of informa-
tion in Facebook is the lack of critical information analysis.
Since Facebook is a spontaneous spare time activity some
young adults neglect the importance of questioning infor-
mation posted on Facebook.

The results of the study were not surprising, but rather
a confirmation of what was already suspected. The results
make it easier to situate social networking in the broader
educational context, as education moves towards a world
with a greater focus on social and interactive online learning,
both in formal and informal settings.

Theoretical Implications
The results showed that social interactions are the essential
factors that support informal learning in Facebook among
the interviewees. This is well aligned with the perspective
of learning as a socio-cultural process, which suggests that
interacting in a social context motivates people to learn and
develop as persons [23]. Social interactions allow the inter-
viewees to get feedback on their own thoughts and actions.
This is essential for personal development, since it gives peo-
ple a deeper and more multifaceted understanding of the
world and how others see them [23]. The results suggested
that feedback and encouragement increase the interviewees’
Facebook activities that support informal learning. This
corresponds to previous research findings that social media
facilitates and increases active and interactive Internet use
[24, p.5]. The results also supported previous research find-
ings [24] that suggested that the possibility of sharing digital
content plays an important role in the knowledge exchange
that exists on social networks.

Previous research on social networking and learning is of-
ten concerned with evaluating the benefits of social networks
within formal education setting, and with how to achieve
those benefits in schools, universities, and other educational
institutions. That focus derives from the common problems
with extrinsic motivation [22]. There was no lack of in-
trinsic motivation in this study: all respondents have had
a Facebook account for many years and are still using it,
mainly because it is fun and because it is an easy way to
keep updated with people and events. It is, however, uncer-
tain how the respondents’ Facebook activities would change

139

if Facebook was a part of learning environment in a formal
education setting. The results may also be culturally bound.
This study also revealed a dire need for educating the young
adults about critical attitude towards information on Face-
book.

Previous studies [24] have discussed how social networking
can lead to innovation, personal development, and lifelong
learning, which were also shown in this study. Similar bene-
fits of sharing digital content were found in this study, as all
respondents reported that they share some kind of digital
content. When the interviewees create and publish digital
content on Facebook, a dynamic and flexible learning envi-
ronment results from the social interactions. Knowledge can
be gained and exchanged in the interviewees’ fields of inter-
est, which makes it possible for young adults with a common
objective to work together and learn from each other. By
sharing, viewing, listening, and reading information, knowl-
edge is passed from one user to another and new knowledge
is gained. It was discovered in this study that the respon-
dents are more likely to participate in information exchange
if the information is directed to them personally, which sub-
sequently facilitates informal learning.

Limitations of The Study
Due to the nature of this study, this study did not aim
at high transferability, but at a rich description of the in-
formants’ use patterns of Facebook. A quantitative study
would be needed to establish generalizability of these results.
Concerning credibility, although saturation was reached, there
was no possibility for informant checks or triangulation. In-
terpretive research is always influenced by earlier experi-
ences and theories, but by formulating the research questions
to be as neutral and open as possible, the interview protocol
aimed at giving room to the interviewees’ own voices. The
study did not look for disconfirming instances to increase
confirmability, as the research aim and question did not aim
at pinpointing them. Some respondents might have felt the
need to answer the interview questions ‘correctly’ as an at-
tempt to please the interviewers with what they thought
were the right answers. The interview bias is always a risk
as it is impossible to reassure the respondents to express
their minds fully, even if it was assured that the interview
material would be treated confidentially [12].

Possible Impacts of The Study
The results of this study suggest that the various social inter-
action patterns on Facebook do support informal learning.
Facebook is not only a potential tool for formal education—
it is already a tool for learning of the informal kind. Face-
book should be considered as a useful way for gaining, shar-
ing, and distributing knowledge and information outside for-
mal education settings—especially as a learning tool that
helps to maintain the young adults’ motivation level. Var-
ious studies have established the essential influence of mo-
tivation on learning outcomes [5], [3, p.1]. It is a matter of
further research to find out how well the intrinsic motivation
shown in informal learning correlates with formal learning
using Facebook as an educational tool.

Further Research
The utility of Facebook in informal learning can be improved
in various ways. Since Facebook is designed for social inter-
actions, it is an ideal environment for exchanging knowledge,

and by inserting functions that promote learning Facebook
might increase its use as an interesting and fun tool for in-
formal learning. Added functions could consist of related
search results: when a user searches for something, a re-
sult consisting of similar and related topics would appear in
order to give the user a possibility to explore those topics
as well. Another function is to connect Facebook to digital
encyclopedias. This way Facebook users can rapidly search
for information on things they find interesting on Facebook,
and learn something new at the same time. Additionally, a
function that could encourage learning through information
exchange on Facebook is to change the way information is
organized on newsfeed. By categorizing information in differ-
ent tabs and giving them various headlines, such as friends,
close friends, news, sports etc. Facebook users would have
a clear overview of all posts retrieved from several places.
This way, the users are able to structure information flow
and obtain more information easily. The proposed functions
should, however, be paired with development of tools for
supporting critical media literacy. It is essential that young
adults realize the importance of questioning information.

Furthermore, the study hopes to encourage educational
authorities to see a possibility in Facebook and the way it
supports informal learning. Facebook is a social networking
site where personal interests play a major role in what infor-
mation its users participate in, and this is shown to motivate
at least the young adult users. If educational authorities
take advantage of this motivation and the possibility to use
Facebook as a platform for education and diffusion of infor-
mation, young adults can gain knowledge while at the same
time increasing their digital skills. This would have the po-
tential for increased equity, transparency, and information
literacy, all of which resonate well with the view that ICT
plays an essential part of addressing societal challenges in
many societies.

It is important to emphasize that all interviewees in this
study had the digital skills required to use computers and
knew how to use Facebook. Since all interviewees were mid-
dle class and only a few of them had poor Internet access,
it would have been interesting to conduct a study about
how informal learning does occur on Facebook among peo-
ple with low digital literacy.

Another suggestion for further research is to compare the
Facebook use of young adults with high education with young
adults with low education in the context of South Africa.
While most of the interviewees of this study had secondary
education, some of the interviewees had not. The interviews
hinted that the uses of Facebook might vary between par-
ticipants with different educational backgrounds. The gen-
eralizability of these results should also be established with
a broader, quantitative survey.

There are many research studies about how social net-
works can be introduced in formal education settings, how-
ever majority of those studies are carried out in developed
countries. Since education differs around the world, it would
be interesting to investigate what effects the introduction of
social networks in formal education settings would have in
various educational contexts in different developing coun-
tries. If benefits were found, one should study their impact
on cost of education, access to education, equity, and the
benefit for the poorest and most marginalized members of
society. As shown in this study, Facebook motivates young,
low-educated adults in South Africa to gain new knowledge,

140

and this should be put to good use both inside and outside
the classroom.

6. REFERENCES
[1] Young South Africans, broadcast media, and

HIV/AIDS awareness: Results of a national survey.
Survey, The Henry J. Kaiser Family Foundation, 2007.

[2] M. Apiola and M. Tedre. New perspectives on the
pedagogy of programming in a developing country
context. Computer Science Education, 22(3):285–313,
2012.

[3] I. Arroyo, K. Muldner, W. Burleson, B. Woolf, and
D. Cooper. Designing affective support to foster
learning, motivation and attribution. In Proceedings of
the 14th International Conference on Artificial
Intelligence in Education Workshops, Brighton, UK,
2009. IOS Press.

[4] O. Bälter and J. Thorbiörnson. Sociala medier som
stöd för lärande. In S. Hrastinski, editor, Mer om
nätbaserad utbildning - fördjupning och exempel.
Studentlitteratur, Lund, Sweden, 2011.

[5] J. Biggs and C. Tang. Teaching for Quality Learning
at University: What the Student Does. Open
University Press, New York, NY, USA, 4th edition,
2011.

[6] T. Blom. Formell kunskap och praktiskt hantverk i
samverkan inom akademien - en (o)möjlig ekvation?
In A.-K. Högman and M. Stolare, editors, I lärandets
gränsland - formella, icke-formella och informella
studier ig̊ar och idag, pages 217–228. Gidlunds Förlag,
Vilnius, Lithuania, 2009.

[7] A. Bryman. Samhällsvetenskapliga metoder. Oxford
University Press, Oxford, UK, 2nd edition, 2008.

[8] G. Bull, A. Thompson, M. Searson, J. Garofalo,
J. Park, C. Young, and J. Lee. Connecting informal
and formal learning experiences in the age of
participatory media. Contemporary Issues in
Technology and Teacher Education, 8(2):100–107,
2008.

[9] J. W. Creswell. Qualitative Inquiry and Research
Design: Choosing Among Five Approaches. Sage
Publications, Thousand Oaks, CA, USA, 3rd edition,
2007.

[10] L.-O. Dahlgren. Qualitative differences in learning as a
function of content oriented guidance. In R. Säljö,
editor, Som vi uppfattar det - Elva bidrag om
inlärning och omvärldsuppfattning. Studentlitteratur,
Lund, Sweden, 1989.

[11] P. Diaz. Webben i undervisningen - Digitala verktyg
och sociala medier för lärande. Studentlitteratur,
Lund, Sweden, 2012.

[12] R. Ejveg̊ard. Vetenskaplig metod. Studentlitteratur,
Lund, Sweden, 2009.

[13] A.-K. Högman. Alternativa vägar till lärande inom
räckh̊all. In A.-K. Högman and M. Stolare, editors, I
lärandets gränsland - formella, icke-formella och
informella studier ig̊ar och idag, pages 130–153.
Gidlunds Förlag, Vilnius, Lithuania, 2009.

[14] P. A. Kirschner, J. Sweller, and R. E. Clark. Why
minimal guidance during instruction does not work:
An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based
teaching. Educational Psychologist, 41(2):75–86, 2006.

[15] T. Klomsri, and L. Grebäck. Social Media in Everyday
Learning: A Qualitative Study about What Use
Patterns of Facebook Support Informal Learning
among Young Adults in South Africa, B.Sc. thesis for
Stockholm University, DSV, 2013.

[16] T. Kreutzer. Generation mobile: Online and digital
media usage on mobile phones among low-income
urban youth in South Africa, 2009.

[17] F. Marton and R. Säljö. On qualitative differences in
learning – 2: Outcome as a function of the learner’s
conception of the task. British Journal of Educational
Psychology, 46(2):115–127, 1976.

[18] M. Mason. Sample size and saturation in PhD studies
using qualitative interviews. Forum Qualitative
Sozialforschung / Forum: Qualitative Social Research,
11(3), 2010.

[19] J. M. Morse. Designing funded qualitative research. In
N. K. Denzin and Y. S. Lincoln, editors, Handbook of
Qualitative Research, pages 220–235. Sage
Publications, Thousand Oaks, CA, USA, 2nd edition,
1994.

[20] H. Mpogole, H. Usanga, and M. Tedre. Mobile phones
and poverty alleviation: A survey study in rural
Tanzania. In J. S. Pettersson, editor, Proceedings of
the 1st International Conference on Mobile
Communication Technology for Development, pages
62–72, Karlstad, Sweden, December 11–12 2008.

[21] D. J. Nicol and D. Macfarlane-Dick. Formative
assessment and self-regulated learning: A model and
seven principles of good feedback practice. Studies in
Higher Education, 31(2):199–218, 2006.

[22] S. Paldanius. Studieointresserades syn p̊a formellt och
informellt lärande. In A.-K. Högman and M. Stolare,
editors, I lärandets gränsland - formella, icke-formella
och informella studier ig̊ar och idag, pages 16–31.
Gidlunds Förlag, Vilnius, Lithuania, 2009.

[23] D. Åkerlund. Ungas lärande i sociala medier. In
M. Alexandersson and T. Hansson, editors, Unga
nätmiljöer - nya villkor för samarbete och lärande,
pages 23–39. Studentlitteratur, Lund, Sweden, 2011.

[24] C. Redecker, K. Ala-Mutka, and Y. Punie. Learning
2.0 - the impact of social media on learning in Europe.
Policy Brief JRC56958, European Commission, Joint
Research Centre, Institute for Prospective
Technological Studies, Luxembourg, 2010.

[25] B. Rognhaug. Kunskap och lärande i IT-samhället.
Runa Förlag, Hässelby, Sweden, 1:2 edition, 1998.

[26] R. M. Ryan and E. L. Deci. Self-determination theory
and the facilitation of intrinsic motivation, social
development, and well-being. American Psychologist,
55(1):68–78, 2000.

[27] STATSSA. Final draft: Information and
communication technology. research & development
and innovation strategy. Strategy paper 71204.4A,
Statistics South Africa, Pretoria, South Africa, 2007.

[28] STATSSA. Census 2011. Statistical Release P0301.4,
Statistics South Africa, Pretoria, South Africa, 2011.

[29] STATSSA. Mid-year population estimates 2011.
Statistical Release P0302, Statistics South Africa,
Pretoria, South Africa, 2011.

[30] A. L. Strauss and J. M. Corbin. Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory. Sage Publications, Thousand Oaks,
CA, USA, 2nd edition, 1998.

[31] TNS. Friendship 2.0. Survey, TNS Research Surveys,
2009.

[32] UNDP. Millennium development goals - goal 2:
Achieve universal primary education. Country Report
South Africa, United Nations Development
Programme, 2010.

[33] P. Weaver. Success in Your Project: A Guide to
Student System Development Projects. Prentice-Hall,
New Jersey, USA, 2004.

[34] C. Zaki Dib. Formal, non-formal and informal
education: Concepts/applicability. In Cooperative
Networks in Physics Education - Conference
Proceedings 173, pages 300–315, New York, NY, USA,
1988. American Institute of Physics.

141

Exploiting Sentiment Analysis to Track Emotions in

Students’ Learning Diaries
Myriam Munezero*

School of Computing
University of Eastern Finland

mmunez@cs.joensuu.fi

Maxim Mozgovoy
The University of Aizu

Aizu-Wakamatsu, Fukushima

mozgovoy@u-aizu.ac.jp

ABSTRACT
Learning diaries are instruments through which students can

reflect on their learning experience. Students' sentiments,

emotions, opinions and attitudes are embedded in their learning

diaries as part of the process of understanding their progress

during the course and the self-awareness of their goals. Learning

diaries are also a very informative feedback source for instructors

regarding the students’ emotional well-being. However the

number of diaries created during a course can become a daunting

task to be manually analyzed with care, particularly when the

class is large. To tackle this problem, in this paper we present a

functional system for analyzing and visualizing student emotions

expressed in learning diaries. The system allows instructors to

automatically extract emotions and the changes in these emotions

throughout students’ learning experience as expressed in their

diaries. The emotions extracted by the system are based on

Plutchik’s eight emotion categories, and they are shown over the

time period that the diaries were written. The potential impact and

usefulness of our system are highlighted during our experiments

with promising results for improving the communication between

instructors and students and enhancing the learning experience.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Processing –

Text Analysis

General Terms
Design, Experimentation, Human Factors

Keywords
Emotion detection, sentiment analysis, learning diaries,

visualization

* These authors contributed equally.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/ or fee. Request permissions from Permissions@acm.org.

Koli Calling ’13, November 14-17 2013, Koli, Finland

Copyright 2013 ACM 978-1-4503-2482-3/13/11$15.00.

http://dx.doi.org/10.1145/2526984

Calkin Suero Montero*
School of Computing

University of Eastern Finland

calkins@uef.fi

Erkki Sutinen
School of Computing

University of Eastern Finland

sutinen@cs.joensuu.fi

1. INTRODUCTION
Instructors are constantly looking for ways to understand and

address the challenges that their students face during the learning

process. Emotional obstacles, in particular, are known to hinder a

learner's progress: students learn and perform better when they

feel joy, satisfaction and contentment about a particular subject

[13]. One approach that instructors use to be aware of their

students’ emotional welfare is the incorporation of learning

diaries which are reflective of a student’s journey throughout the

duration of a course [16]. Understanding students’ personal

diaries to uncover their feelings toward the learning experience as

a whole (i.e., the instructor, the learning material and topics, and

themselves and their performance) can lead to improvements in

the quality of the instructor-student relationship and the manner of

teaching [2].

Over the past two years, a large number of sentiment analysis

(SA) programs have been developed to discover the sentiment

content of texts in various genres including news headlines for

polarity and emotions [28], movie reviews for polarity [20] and

Twitter posts for emotions [11]. However, not much work has

been done in applying SA in educational settings, particularly in

the analysis of students' learning diaries. Applying SA to the

educational field holds many possibilities for improving the

communication pathways and learning opportunities between

instructors and their students. That is, it is well documented that

students' emotions toward the learning experience have an

important influence on learning outcomes [9] and that happy

learners are generally more motivated to accomplish their set

goals throughout the course [13]. Hence, the prompt detection of

students' emotional problems or of students that need particular

attention is of vital importance. Through the automatic analysis of

the sentiments and emotions expressed in students’ learning

diaries it is possible to promptly identify students that are in need

of immediate and personalized feedback. Additionally, using SA

on students’ text is less invasive than, for instance, personal

interviews, which is desirable for instructors as they obtain

information on a student’s emotions without disturbing his or her

learning [25].

SA is framed within the area of natural language processing

(NLP) and is broadly defined by Pang and Lee [20] as the

computational treatment of opinions, feelings, emotions, and

subjectivity in texts. Current work in SA focuses on classifying

sentiments based on the polarity/valence (positive, negative,

142

neutral) of text [20]. In this paper, for a richer understanding of

the students’ texts, we go beyond polarity classification and

identify expressions of emotions such as joy, sadness, anxiety, and

frustration and how these emotions evolve over the period of time

when the diaries are written. Our work is relevant to the education

community as an application of SA in the educational context. As

Goleman [7] points out in his book, Emotional Intelligence,

expert teachers are able to recognize a student’s emotional state,

allowing them to respond in an appropriate manner that has a

positive impact on the learning process. Goleman [7] also adds

that students should also be able to recognize and accurately label

their emotions and how they may guide their actions.

Hence, in order to provide instructors with a fast method to

identify students' emotional states, this paper presents a functional

system that takes students' learning diaries as input and gives a

graphical visualization of the changes in emotions in the analyzed

learning diaries as output. In addition, our system illustrates the

polarity scores and the various topics covered in the diaries.

Our system’s main contribution relies in providing the instructor

with new perspectives for the detection, analysis and prompt

addressing of the emotions that the students express. Our system

also facilitates swift interventions and the creation of personalized

feedback to students who so require, hence improving student

motivation and performance [25]. It is not the aim of the system to

predict a student’s learning process or progress; it simply provides

a window into the emotional well-being of students during their

time of writing the learning diaries. The instructor is allowed to

monitor and respond accordingly when emotions such frustration

and anxiety are observed to be extreme or lasting for a too-long

period of time. Not all of the emotions might need to be

addressed. In addition, students themselves can use the system to

assess their learning and motivational progress according to their

own needs.

2. BACKGROUND

2.1 Learning Diaries
Learning diaries are containers for writing that are usually

recorded over a period of time [16]. They are included in

educational settings as a means of facilitating or assessing

learning. They may provide valuable insights into what students

think and feel during lectures and any problems that they might be

having. They are vehicles for reflection for the student, without

which might not be possible to do in the classrooms. The diaries

usually accompany a program of learning or a research project.

Moreover, the diaries can come in many different forms and be

used to fulfill different purposes [16]. Thus the nature of learning

diaries makes them largely subjective. As Altrabsheh et al. [1]

explain; subjectivity represents facts and also emotions, feelings,

views, and beliefs.

2.2 Sentiment Analysis on Students’ Texts
Sentiment Analysis (SA) is a field that works on making sense out

of textual material [1], and using it to analyze students' learning

diaries can help instructors understand the learning behaviors of

students. SA, however, has not been widely applied to the

educational sector. A majority of the SA research has been built

around user reviews corpora (e.g., movie reviews, product

reviews, etc.) [20, 19]. This is because these reviews, similar to

learning diaries used in the paper, are subjective and contain

information about the user experience with the product or movie

[10].

Works on SA with student texts have been applied to various

forms of texts, especially those retrieved from e-learning

platforms. Santos et al. [26], for instance, used SA to analyze

emotional reports written by students while they were conducting

an activity. Our work differs from theirs in that we go beyond the

analysis of emotional valence (how pleasant or unpleasant an

emotion is) into the identification of the categories of emotions

present in text. In another relevant work, Rodrigues et al. [25]

extracted emotions from essay texts produced within the

classroom and also within an adaptive learning environment that

supported dynamic task recommendation. They made use of

emotion dictionaries and word-spotting techniques in order to

classify the texts into four emotion categories: joy, anger, sadness

and fear. Our study differs from the work by Rodrigues et al. [25]

in that we use texts from more than one student and then analyze

and visualize the emotions and their changes over a period of

time.

2.3 Feedback in Education and Learning
SA has also been investigated to improve the feedback given to

students [1]. It is important to notice that good feedback, among

other things, will encourage motivation and self-esteem, which are

directly related to the student's emotional state. As Hattie and

Timperley [8] explain, it is beneficial to give positive feedback,

even if what has to be communicated is negative (e.g., when a

student has solved a problem wrongly). Analyzing students’

learning diaries can also help in understanding the different issues

that students go through, including their lack of understanding of

a subject. These learning diaries can in fact become an important

source of feedback to the instructor. Through this type of

feedback, a student can convey his or her feelings in short

expressions or words [1]. Analyzing online students' feedback,

Feng et al. [5] created patterns to find which words are associated

more with emotions, and they also created sentiment adjustment

strategies to help students in certain situations like being

frustrated after being criticized by a teacher.

Hence, it is reasonable to say that the information on emotions in

the learning diaries have the potential to prompt the teachers to

tailor their teaching styles in a manner that better matches the

learner’s requirements.

2.4 Categorizing Emotions
It is beneficial to investigate the kind of emotions students express

and experience during the learning process, and how these

emotions evolve over a period of time [25]. Lists of primary or

“basic” emotions have been put forward prominently in the

psychological field by Frijda [6], Ekman [4], and Plutchik [22],

among others. The basic emotion categories used in these lists

include anger, sadness, joy, love, surprise, happiness, fear and

disgust (see [18, 27], for a detailed compilation of primary

emotion lists). It is difficult, however, to settle on a category of

emotion labels given the gradations and subtleties of the way

emotions are expressed in language [29]. Furthermore, in

literature, there is no consensus on which basic emotions to use.

Thus we decided to concentrate on Plutchik’s eight emotions: joy,

sadness, fear, anger, anticipation, surprise, disgust and trust, as

143

these adequately fit our purpose of identifying several basic

emotions and in addition, they can be used to derive two other

emotions that have been found relevant in the learning context:

frustration and anxiety [12]. We include frustration and anxiety in

particular, as they can impede the progress of the students toward

their learning goals [14]. Plutchik's categorization of emotions

further provides us with the conceptualization of blending the

eight primary emotions to obtain secondary and tertiary emotions,

such as frustration and anxiety [22].

3. SYSTEM DESCRIPTION
For the purposes of emotional analysis of learning diaries, we

have designed and implemented an automated system that

performs several actions. The system accepts students' learning

diaries as input and then fragments the diaries by the date of each

diary entry. It then extracts the emotions present in the diary

entry, their negative and positive attributes, and the topics present.

Finally, using the extracted diary entry time elements, the system

produces a fine-grained visualization of the emotional information

flow in the entire diary (i.e., all the analyzed entries). Figure 1

illustrates the overview of our proposed system.

Figure 1. System flow diagram.

3.1 Uploading Students’ Learning Diaries
Our system allows a user (e.g., the instructor) to enter a student’s

name and upload the learning diary belonging to that student for

analysis. Upon uploading the diary, the system fragments the

diary time-wise. Usually when a student updates a learning diary,

the date of the new diary entry is recorded which makes it

possible for the system to fragment the whole learning diary into

individual diary entries. Figure 2 illustrates an example where one

student’s learning diary had three diary entries. Figure 2 shows

the time stamp of the diary entry along with the textual content

belonging to that time stamp. From these diary entries, we are able

to create several visualizations (see Section 3.3).

(1.1.2013) This morning I woke up and turned off my alarm. I went

(1.2.2013) When you walk into my room there is a doctor to the rig

(1.3.2013) When I am finished with this experiment I am going to

Figure 2. Student’s learning diary, fragmented by entry

date.

3.2 Extractions of Emotions
In order for a richer exploration of the emotions expressed that

goes beyond the emotion polarity of learning diaries, we extract

emotions from the learning diaries by comparing each sentence in

a diary against the NRC word-emotion association lexicon [15].

The lexicon has been manually annotated into eight emotion

categories according to Plutchik's [22] eight basic emotions: joy,

sadness, fear, anger, anticipation, surprise, disgust and trust. The

annotations also include scores for whether a word is positive or

negative. Each score in the lexicon is simply a Boolean marker,

denoting whether the given word belongs to a given emotion

category. In our calculations, when a word in a learning diary

matches a word in the lexicon, we mark that word with a score of

1 within the matched emotion category, and when the word does

not match any word in the lexicon, we mark it with a score of 0.

Currently, the lexicon includes emotional annotations for 6,468

unique words. Further description of the lexicon can be found in

an article by Mohammad and Turney [15].

In our work, an emotional score (eScore) is calculated for each

one of Plutchik’s eight categories represented in each diary entry

as follows:

eScore(ca t e g or y)=
eWords(ca t e g o r y)

eWords(a l l)

where:

- eWords(category) is the number of words in the uploaded

learning diary that have nonzero emotional score for the

category according to the NRC lexicon.

- eWords(all) is the number of words in the uploaded

learning diary that have nonzero emotional score for any

category according to the NRC lexicon.

Using the eight categories of emotions, we were also able to

calculate frustration and anxiety as follows [23]:

Frustration=Average(eScore(An g er ,S u r p r i s e , S a d n es s))
Anxiety=Average(eScore(An t i c i p a t i o n, F ea r))

where Frustration is given by the average eScore of anger,

surprise and sadness; and Anxiety by the average eScore of

anticipation and fear.

3.3 Data Visualization
Our system visualizes obtained scores with a variety of graphical

forms. The visualization shows the following:

144

3.3.1 Emotion Distribution
Emotional scores, calculated over a sequence of diary entries, are

visualized on a radar chart that directly resembles Plutchik’s

wheel of emotions.

This radar chart (Figure 3) has eight independent axes,

corresponding to the individual primary emotions. For each axis,

we calculate a point of average emotional score over the given

diary entries (i.e., for each diary entry, we calculated the eScore

and then summed up all the eScores and divided the resulting

value by the number of entries). Then these points become

vertices of a filled polygon, thus providing a convenient

visualization for the eight primary emotional scores. As frustration

and anxiety are mixed emotions [22], they are not included in the

radar chart. Those two emotions are visualized separately in a

time chart (see Section 3.4).

3.3.2 Emotion Polarity
In addition, polarity attribute scores are visualized on a bar graph

(see Figure 4). Since “positive” and “negative” annotations are

directly present in the NRC lexicon, in Figure 4, we make use of

this information. The visualization shows the positive/negative

average values for the given range of diary entries.

3.3.3 Topics
Most topics found frequently in the uploaded student’s diary are

displayed as a word cloud, which is convenient for identifying

frequent topics conveyed by one particular student (see Figure 5).

Before building a word cloud, we apply a stop-word removal

procedure and Porter’s stemming algorithm [24]. These steps help

to focus on the linguistically significant components of text by

removing common words that are not topics, such as “without”,

“soon”, “sometime”, etc.

3.3.4 Temporal Flow of Emotions
Our system also allows for the visualization of the temporal flow

of emotions in the learning diaries. The temporal flow-charts are

divided into two views: The first view (Figure 6a and Figure 6b)

displays the flow of the eight primary emotions. The second view

(Figure 7) displays the mixed emotions, frustration and anxiety. In

each of the views, a user has the choice of visualizing all the

emotions or selecting a combination of emotions. Figure 6a shows

visualization when all the emotions are selected, and Figure 6b

shows an example where one emotion (i.e., fear) is selected.

For the temporal flow-chart, we build average emotional scores

for each time entry and thus obtain a calendar-like view of

emotional changes in the writings. In the given examples, the

entries are given for three different dates; hence, the graphs are

built for three time points. The Y-axis values for the flow chart

are calculated in the same manner as for the eScore, (i.e., number

of emotional words for the given category divided by the number

of emotional words).

4. PRELIMINARY EVALUATION

4.1 Dataset
We performed a preliminary evaluation of our visualization

system with samples of diaries from the Newman et al. [17]

corpus1. The diaries used were written by first year college

students, where they described their experience of going to

college. There were a total of 18 female participants and 17 male

participants, and each participant wrote in their diary three entries

in three different occasions in sequential order, for a total of 54

entries written by females and 51 entries written by males. Table 1

shows a description of the entries.

Table 1. Description of diary entries by gender with average

word count (Avg) and standard deviation (STD).

Female Male

Diaries Entries Avg STD Diaries Entries Avg STD

18 54 459 119 17 51 384 105

1 We obtained the corpus through personal communication with

James W. Pennebaker, a professor of psychology.

Figure 3. Distribution of emotions within a diary entry.

Figure 4. A diary entry’s positive and negative sentiment

averages.

Figure 5. Word cloud view of topics present in the uploaded

learning diary.

145

Since the diary entries did not have a date time stamp on them, for

our preliminary evaluation, each diary entry was assigned a date

in the month-year form. Hence, each diary entry had the format

entryNumber_monthYear.txt, transforming the sequential order of

the diary entries into three-month time stamps. This format made

it easier to place the diaries in a time sequence that allowed us to

generate the flow of emotion charts, as shown in Figures 7, 8, and

9. We tested all 35 diaries, of which 18 diaries were written by

females and the 17 diaries were written by males.

4.2 Results
With our system, it is possible to visualize the variation over time

in all the emotions, including frustration and anxiety, as detected

in the students’ diaries. This allows the identification of students

whose anxiety and/or frustration levels are increasing. It is also

possible to determine the proportionality between anxiety and

frustration that the students are experiencing.

In our preliminary evaluation, eight participants (five female and

three male) showed frustration and anxiety levels that were

proportional to each other over the three diary entries (i.e., both

anxiety and frustration increased and decreased proportionally at

the same time). Figure 8 gives an example where such a

relationship was observed. In the other 27 participants (13 female

and 14 male), anxiety increased while frustration decreased or

vice versa. Moreover, within the dataset, we observed that with 30

participants, their three diary entries contained more anxiety than

frustration, as indicated by the Y-axis values in Figure 7. No

participant’s diary showed more frustration than anxiety over the

three diary entries, and five participants’ diaries intertwined (i.e.,

they showed more anxiety than frustration in one diary entry and

then more anxiety than frustration in another). Table 2 shows a

summary of the results.

Figure 6a. View of the flow of all the eight Plutchik [22] emotions within a learning diary.

Figure 6b. Fear flow within the learning diary.

146

Figure 7. Frustration and anxiety emotional flow within a learning diary.

Table 2. Distribution of anxiety and frustration within the

students’ diaries (all entries included).

 Female Male Total

More anxiety in each of the

three diary entries

17 13 30

More frustration in each of

the three diary entries

0 0 0

Intertwined 1 4 5

Total 18 17 35

Figure 9 shows an example where the frustration and anxiety

levels are intertwined. Interestingly, only one participant

registered anxiety levels of 0.4. Otherwise, all the participants had

frustration and anxiety levels less than 0.4, with frustration in

particular, registering levels less than 0.2 within 34 participants.

Thus, within the dataset, we see that the majority of participants

expressed relatively low frustration whereas most of the

participants expressed higher anxiety levels. This could be

interpreted from the context within which the diaries were written:

the students were expressing their anxiety toward their new

college life experience. An interesting direction to explore is the

selection of an empirical threshold, whereby if frustration and

anxiety levels go beyond it, a signal is given to the instructor.

4.3 Implications
Our visualization system can provide important insights into the

students' pedagogical well-being, which is a vital part of the

learning experience since according to the “Explaining Student

Performance” report (2005) by the European Commission, data

from PISA (Programme for International Student Assessment)

suggests that students who have higher levels of performance in

their scores are less anxious about the learning process. Also, the

report showed that there is a positive correlation between interest

and enjoyment of a subject and the students' PISA achievements2.

By observing the flow of emotions within a diary, an instructor is

given the opportunity to timely address any issues or concerns

that might be causing any of the negative emotions such as

frustration. It is important to notice that an instructor's feedback,

among other things, will encourage motivation and self-esteem,

which are directly related to the student's emotional state.

By taking the information on the student’s emotional state into

account, instructors can have a holistic picture of the students’

emotional progress. Our system can also serve as a self-evaluation

platform in which the students can assess their emotions and

motivational progress. Hence, our visualization system can

positively contribute to enhancing the traditional educational

setting by providing a means of surveying the student’s well-being

and, at the same time, helping instructors to personalize their

feedback. This will result in an overall improved learning

experience.

From the students’ perspective, we are aware that allowing for

student self-evaluation might prompt them to manipulate the

content of their diaries; however, with the system, there are no

wrong or right emotions. The emotional flow of a student is not

part of that student’s performance assessment. With that

emphasized, we believe that the students will use the system as a

reflection tool and will not try to manipulate the content of their

diaries as to improve their grades.

5. CONCLUSION AND FUTURE WORK
In this paper we have explored the automatic analysis and tracking

of emotions within student’ learning diaries. The developed

system presented here aimed to function as an aiding system for

improving instructors' teaching methods and feedback and serving

as a reflection medium for students.

2 http://ec.europa.eu/education/more-

information/doc/basic_en.pdf

Figure 8. Example where frustration and anxiety have a

parallel relationship.

Figure 9. Example where Frustration and Anxiety intertwine.

147

The preliminary evaluation showed that the system successfully

presented information in an easy-to-understand manner and that

the emotional flow of the students during the learning experience,

as expressed in their learning diaries, can be meaningfully

extracted.

Future work involves studying student diaries that have longer

time stamps and analyzing their long-term implications. We also

plan to continue the validation of our emotion detection system by

comparing the results and performance with other systems on the

same learning diaries dataset.

Future versions of the system can be incorporated in e-learning

environments or learning management systems (LMSs), where

text-based documents produced by the students can be

automatically analyzed and the results combined with student

profile information. The combination can be used to customize

teaching material for students. Also, we plan to conduct a deeper

linguistic analysis to better understand the expressed emotions. As

the current version of the system makes use of a keyword based

approach for detecting emotions, we plan to extend the

capabilities of the system by incorporating approaches such as

phrase- and sentence-level emotion analysis and common-sense

analysis for broader emotion detection. Advantageously, using the

keyword approach allows the system to handle the use of slang

words and misspellings and even handle keyword sets of different

languages.

Furthermore we plan to include event analysis within the next

version of the system so as to better inform an instructor of any

events such as sitting for an exam, receiving bad news or passing

a course, that might have led to the observed emotions.

6. REFERENCES
[1] Altrabsheh, N., Gaber, M. M., and Cocea, M. 2013. SA-E:

sentiment analysis for education. In 5th KES International

Conference on Intelligent Decision Technologies, (Sesimbra,

Portugal, June 26-28 2013).

[2] Bergström, P. 2010. Process-based assessment for

professional learning in higher education: Perspectives on

the student-teacher relationship. International Review of

Research in Open and Distance Learning. 11, 2.

[3] D'Mello, S. K., Craig, S. D., Witherspoon, A., McDaniel, B.,

and Graesser, A. 2008. Automatic detection of learner’s

affect from conversation clues. User Modeling and User-

Adapted Interaction. 18, 1-2, 45-80.

[4] Ekman, P. 1992. An argument for basic emotions. Cognition

and Emotion, 6, 3, 169-200.

[5] Feng, T., Zheng, Q., Zhao, R., Chen, T., and Jia, X. 2009.

Can e-Learner’s emotion be recognized from interactive

Chinese texts?. IEEE 13th International Conference on

Computer Supported Cooperative Work in Design

(CSCWD), 2009, 546-551.

[6] Frijda, N. H. 1986. Emotional behavior. Chapter 2, In The

Emotions. Studies in Emotion and Social Interaction,

Cambridge University Press.

[7] Goleman, D. 1995. Emotional Intelligence (The 10th

anniversary edition), Bantam Dell, NY.

[8] Hattie, J., and Timperley, H. 2007. The power of feedback.

Review of Educational Research, 77, 1, 81–112.

[9] Järvenoja , H., and Järvelä, S. 2005. How students describe

the sources of their emotional and motivational experiences

during the learning process: A qualitative approach.

Learning and Instruction, 15, 5, 465-480.

[10] Kim, S. M., and Calvo, R. A. 2010. Sentiment analysis in

student experiences of learning. In Proceedings of the 3rd

International Conference on Educational Data Mining, R. S.

J. D. Baker, A. Merceron, P. I. Pavlik Jr. Eds. 110-120.

[11] Kim, S., Bak, J., and Oh, A. 2012. Do you feel what I feel?

Social aspects of emotions in twitter conversations. In

Proceedings of the AAAI International Conference on

Weblogs and Social Media.

[12] Kort , B., Reilly, R. and Picard, R. 2001. An affective model

of interplay between emotions and learning: Reengineering

educational pedagogy-building a learning companion. In

Proceedings of the IEEE International Conference on

Advanced Learning Technology: Issues, Achievements and

Challenges, Madison, Wisconsin: IEEE Computer Society,

43-48.

[13] Lawson, C. 2005. The connections between emotions and

learning. Center for Development and Learning. Available at

http://www. cdl.

org/resourcelibrary/articles/connect_emotions. php.

[Retrieved on 3 June 2013].

[14] McQuiggan, S. W., Lee, S., and Lester, J. C. 2007. Early

prediction of student frustration. Affective Computing and

Intelligent Interaction. Springer Berlin Heidelberg, 698-709.

[15] Mohammad, S. M., and Turney, P. D. 2012. Crowdsourcing

a word-emotion association lexicon. Computation

Intelligence, DOI: 10.1111/j.1467-8640.2012.00460.x

[16] Moon, J. 2003. Learning journals and logs, reflective diaries.

Centre for Teaching and Learning Good Practice in

Teaching and Learning. University of Exeter.

[17] Newman, M. L., Groom, C. J., Handelman, L. D., and

Pennebaker, J. W. 2008. Gender differences in language use:

An analysis of 14,000 text samples. Discourse Processes, 45,

211-236.

[18] Ortony, A., Clore, G. L., and Collins, A. 1994. The structure

of the theory. Chapter 2, in The Cognitive Structure of

Emotions, Cambridge University Press, 15-33.

[19] Pang, B., and Lee, L. 2004. A sentimental education:

sentiment analysis using subjectivity summarization based on

minimum cuts. In Proceedings of the 42nd Annual Meeting

on Association for Computational Linguistics (ACL '04).

Association for Computational Linguistics, Stroudsburg, PA.

[20] Pang, B., and Lee, L. 2008. Opinion mining and sentiment

analysis. Foundations and Trends in Information Retrieval,

2, 1-2, 1-135.

[21] Pérez-Marín, D., Alfonseca, E., and Rodríguez, P. 2006. On

the dynamic adaptation of computer assisted assessment of

free-text answers. In Proceedings of the Adaptive

Hypermedia Conference, LNCS, 4018, Springer-Verlag.

[22] Plutchik, R. 1980. A general psychoevolutionary theory of

emotion. Emotion: Theory, Research, and Experience, 1, 3,

3-33.

148

[23] Plutchik, R. 1991. The Emotions (revised ed.), University

Press of America Inc, Lanham, MD.

[24] Porter, M. F. 1980. An algorithm for suffix stripping.

Program: Electronic Library and Information Systems, 14,

3, 130-137.

[25] Rodriguez, P., Ortigosa, A., and Carro, R. M. 2012.

Extracting emotions from texts in e-learning environments.

Sixth International Conference on Complex, Intelligent, and

Software Intensive Systems, 887-892.

[26] Santos, O. C., Salmeron-Majadas, S., and Boticario, J. G.

2013. Emotions detection from math exercises by combining

several data sources. Artificial Intelligence in Education

Lecture Notes in Computer Science, 7926, 742-745.

[27] Shaver, P., Schwartz, J., Kirson, D., and O’Connor, C. 2001.

Emotion knowledge: Further exploration of a prototype

approach. Emotions in Social Psychology: Key Readings, G.

W. Parrott Ed., Taylor & Francis, USA, 25-56.

[28] Strapparava, C., and Mihalcea, R. 2007. SemEval-2007 task

14: affective text. In Proceedings of SemEval-2007, Prague,

70-74.

[29] Wyner, S., Shaw, E., Kim, T., Li, J., and Kim, J. 2008.

Sentiment analysis of a student Q&A board for computer

science, The 9th KOCSEA Technical Symposium, Vienna,

VA.

149

Building Collaborative Quizzes

Bruno Sampaio
Dept. Informática, FCT,

Universidade Nova de Lisboa
Quinta da Torre, Caparica,

Portugal
b.sampaio@campus.fct.unl.pt

Carmen Morgado
CITI/Dept. Informática, FCT,
Universidade Nova de Lisboa

Quinta da Torre, Caparica,
Portugal

cpm@fct.unl.pt

Fernanda Barbosa
CITI/Dept. Informática, FCT,
Universidade Nova de Lisboa

Quinta da Torre, Caparica,
Portugal

fb@fct.unl.pt

ABSTRACT
Building appealing online quizzes is not a simple task, al-
though there are many tools to build quiz tests, usually they
are not a very motivating activity to students. Typically stu-
dents look to these quizzes as an obligation (assessment) and
not as a tool that can help them in their learning process.

Epik (Edutainment by Playing and Interacting with Knowl-
edge) is an online application, which allows the easy devel-
opment of quizzes games, through a graphical environment.
Epik quiz games may be distributed through existing LMS
(Learning Management Systems) or directly on the Epik
framework. Epik quizzes may be individual or collabora-
tive, they consist of a sequence (collection) of interactive
scenarios. Within each scenario there is a set of questions of
type: multiple choices, true or false or matching. Didactic
contents such as: texts, slides, images or videos, can also be
placed on the scenarios. Because of its integration with an
LMS, learning materials already created on the LMS can be
easily imported and reused.

In order to increase the student knowledge acquisition,
each question can have a set of ”helps” (didactic contents;
hints; and incorrect answers removal (50/50)). In order to
promote the cooperation between students, Epik has the col-
laborative quizzes. These type of quizzes has mechanisms
to encourage collaboration among team players. Through
the use of ”helps” collaboration between team members is
encouraged. Team players who have already correctly an-
swered a given question, can help others. The game de-
veloper can easily configure the scores bonus and penalties
values of each question, as well as the question ”helps”.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in
Education—collaborative learning

General Terms
Human Factors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Koli Calling ’13, November 14 - 17 2013, Koli, Finland
Copyright 2013 ACM 978-1-4503-2482-3/13/11 ...$15.00
http://dx.doi.org/10.1145/2526968.2526985.

Keywords
quizzes; educational games; collaborative learning environ-
ments

1. INTRODUCTION
One of the oldest and most used learning activities are the

quizzes. They can be used in class or as homework in almost
any educational area, namely in computer science courses.
Covering almost any education area and level, being used
in teaching first year students, as well as all levels of school
education. Online quizzes can give students an immediate
feedback about their learning progress. Typically, they are
individual activities, although when used as a group activ-
ity tends to increase participation as well as the ability to
work as a team [20]. Group quizzes can provide a rich learn-
ing experience, where students learn by doing and through
communication and interaction with others.

Collaborative learning, where a group of students works
together to solve a problem, is usually widely used in un-
dergraduate and graduate computer science courses. This
type of learning activity increases the development of some
of student skills such as communication, cooperation and co-
ordination, all of them relevant in the learning process and
individuals formation [22].

Nowadays there are many frameworks [2] [10] for the de-
velopment of online quizzes, some of them with the ability to
integrate some competition mechanisms, but almost none of
them have mechanisms that promote collaboration among
the quiz participants. Another problem regarding the ex-
isting frameworks is that, although many of them are able
to integrate multimedia contents on the quizzes, they do
not have integrated tools to easily manage and reuse these
didactic materials.

Most of existing LMSs (Learning Management System),
as Moodle [4], have functionalities to create and manage
quizzes. But quizzes created by these systems are not very
interactive and are not fully integrated into the learning en-
vironment. Most of them seem a little with the tests used
in student evaluations.

On the other hand, the possibility given by the games
of joining competition with team work (collaboration) of-
fers an entertaining and stimulating way of introducing the
collaboration in the learning process [8] [17]. The intrinsic
characteristics provided by games (competition and collab-
oration) can make of them a powerful tool on the learning
process. Particularly the use of games on the learning pro-
cess can have two key aspects: to motivate, the desire to
explore the motivational power of games in order to ”make

150

learn fun”; for practice, the belief that ”learning through do-
ing”, with mechanisms (like for example the simulations),
offers a simple and powerful tool. In the last decade, many
studies were conducted to investigate the effectiveness of
the use of educational computer games in teaching a vari-
ety of different topics, such as for example mathematic [14],
software engineering [12], computer science [18]. Previous
studies have reported that educational computer games can
enhance students’ interest and motivation on learning [11]
[13]. They argue that educational computer games have a
great potential on helping students to improve their learn-
ing performance as well as their motivation [15]. Although
there are many educational games, most of them are specific
for a given theme/topic.

However, the games are still not widely used as a teach-
ing activity. Some difficulties in a wider use of games in
the learning process are related with their development and
also with the production and management of didactic con-
tents to use in the games. Another problem is related to
the difficulty of inserting games as a learning activity in a
working environment in the classroom or as a homework. So
the possibility to integrate games as a learning activity on
existing LMSs is a requisite. The possibility of having games
as a collaborative activity, in order to incorporate the no-
tion of working groups (a typical organizational structure
that exists in class), is also a requisite. Nowadays there are
not many generic platforms [21] for developing educational
games for any given educational area. Most of the exist-
ing game development platforms require a prior knowledge
of programming for the construction of games, apart from
which, generally, these platforms are not specialized and tar-
geted for education/learning.

Epik (Edutainment by Playing and Interacting with Knowl-
edge) [3] is a framework that allows the easy development
of different educational games types, namely individual and
collaborative quiz games. The development of an Epik game,
is done easily resorting to using a graphical environment
and without requiring any prior programming knowledge.
Quizzes developed with Epik can easily be distributed to
students as an external learning activity through the LMS
used at classes. The teachers, when building the game, can
also reuse the didactic contents already existing in the LMS
Epik also provides some collaborative mechanisms that can
be easily incorporated into a game in a fun and interesting
way.

In this paper, we will describe the Epik framework and
how to build a quiz game with it. We also present a discus-
sion of different platforms to develop online quizzes, and a
brief analysis of some of the Epik key features that distin-
guish it of others.

2. ONLINE FRAMEWORKS FOR BUILD-
ING QUIZZES

Nowadays there are several online frameworks to build
quizzes, just as there are many online quizzes covering many
educational areas and topics ranging from the teaching of
languages to mathematics or physics. We analyze some on-
line frameworks we think are the most used and relevant to
build and distribute quizzes:

• Google Forms: can be used to develop short multiple
choice quizzes, that may be post, for instance on a
classroom blog. The students answers are present in

an easy-to-grade spreadsheet.

• ProProf [5]: offers an easy way to make a quiz for ed-
ucation or fun. The quizzes questions may be true or
false, fill in the blank, short and long answers, essay,
check-boxes, yes/no, multiple choice questions. It is
possible to add videos, pictures, articles, PowerPoint
and documents (word or pdf) to the questions, and
record student’ names and their score, answers and
time spent, this information can be used to students
assessment. The quizzes may be distributed on a web-
site, blog or a class management system (developed by
the same software company).

• Socrative [9]: is a smart student response system that
empowers teachers to engage their classrooms through
a series of educational exercises and games via smart-
phones, laptops, and tablets. Questions can be multi-
ple choice, short answer, or a combination of both. It
is possible to create teams of students (”rooms”). In
a given room, students can compete among them us-
ing a very simple rocket race game. In this game each
student controls a rocket, where its speed is defined by
the students’ answers.

• Quiz Revolution [7]: offers an easy way to make a quiz
about anything in minutes. Questions may be multi-
ple choice, write-in answers and timed questions. It
is possible to add images, videos and different scores
associated to each question responses.

• QuestBase [6]: is a cross-platform application that pro-
vides a set of functionalities to create and manage as-
sessments, tests, quizzes and exams, both online and
printed. Quizzes may be building without any techni-
cal skills. It can manage several question types, and
it is possible to randomize questions and answers, as-
sign different scores and feedback messages, and add
custom instructions and hints to questions. Moreover,
the questions may be imported from files (e.g. Access,
Excel)

• ClassMaker [1]: offers an easy way to make quizzes,
with multiple choice, short answer and essay questions.
It is also possible to randomize questions and answers,
and assign time limit, images and documents to ques-
tions.

These frameworks are online web applications, which have
forms to edit question. Several of them (ProProf, QuizRev-
olution, QuestBase, ClassMaker) allow the addition of re-
sources to questions, in order to reuse didactic contents. Al-
though, given the way how the questions are constructed,
the quizzes are not very appealing to be used in learning
environments.

The quizzes built with these frameworks may be distributed
to students in websites or class blogs, and can also be used
to students assessment, but they are not totally integrable
into existent LMSs.

Usually these quizzes allow an immediate feedback, but
are not adaptable to the student’s knowledge and almost
none of them have a notion of awareness (Table 1), fea-
tures that are very important to motivate student’ partici-
pation. Note that these are two typical features of educa-
tional games, that are fundamental to the learning process

151

Table 1: Environment features of quizzes

Table 2: Collaboration features of quizzes
Framework Collaboration Competition

Moodle No Yes
Question score

GoogleForms No No
ProProf No Yes

Question score;
Final score

Socrative No Yes
”race space”

QuizRevolution No Yes
Question score

QuestBase No Yes
Question score

ClassMaker No Yes
Question score

[16]. The idea that the activity fits the student’s knowledge,
makes the activity more appealing and more dynamic allow-
ing multiple execution paths. The student perception of the
environment on activity motivates him to participate, thus
increasing his/her knowledge acquisition.

According to the collaborative features of these online
quizzes, neither of them have mechanisms to promote col-
laboration, although most of them have some competition
mechanisms, basically based only on questions and final
scores, as illustrated in Table 2. Only Socrative framework
allows a team of students to perform together an activity,
that is coordinated by a user with teacher’ role.

In summary, quizzes created by these frameworks are very
similar to traditional exam quizzes, however they have the
advantage of online distribution, immediate feedback, and
some may incorporate educational resources. Only Quest-
Base quizzes allow the association of helps to questions which
make quizzes more a learning activity and less only an eval-
uation activity. But although all of these frameworks are
very useful to build quizzes quickly and easily, manage on-
line quizzes and student outcomes in quizzes, they all lack
in some important features to enable the full use of quizzes
as a learning activity.

Figure 1: An example of a layout of an Epik quiz
scenario.

3. EPIK FRAMEWORK
Epik is a web-based framework dedicated to management

of didactic contents and development of educational games
based on quizzes [19]. In order to progress and complete
the game players must correctly answer a set of questions
sequentially presented to them. At the end a score will be
assigned to the players or teams based on their performance.

3.1 Key features
The main Epik’s key features are related to the creation

of games based on sets of quizzes, and integration of collab-
oration mechanisms between team players.

Epik support multiple question types such as multiple
choice, true or false and matching. To each question can
be given a score and can be associated to set of ”helps”. The
”help” can be a didactic content (text, video our image) or a
hint given by other team member (when working with col-
laborative quizzes), however each time a ”help” is consulted
by the player a penalty is given to the score answer. Al-
though this penalty is less than when the wrong answer is
given. The ”helps” (contents and hints) and scores associ-
ated to each question are defined by the teacher at creation
time.

Epik quiz is structured as a sequence of scenarios at each
scenario we can have multimedia contents and several ques-
tions. To be able to proceed to the next scenario the user
(player) must complete the scenario activities. This, associ-
ated with the fact of having an immediate feedback of the
evolution of each participant (given by a score), a time limit
to complete the quiz and a ranking of the best scores, gives
a sense of game to the quizzes and not so much of a typical
assessment activity. Its graphical user interface offers users
a more enjoyable experience when compared with the more
usual quizzes layout.

By being organized in scenarios (Figure 1) it is easier for
teachers to arrange the questions by topics and also define
different learning paths based on user behavior at each sce-
nario. This allows teachers to adapt quizzes to the knowl-
edge level of each student.

Another key feature of Epik quizzes is the possibility of in-
tegration with existing LMS that support the IMS LTI stan-
dard. For example on Moodle this can be done by creating
an activity as an external tool where the URL of the quiz
game as to be given. When the quiz activity is started from

152

Figure 2: An example of collaboration sequence.

the LMS, information regarding the course and users is sent
to Epik. This information is used to find a session for the
player and the scores and other information regarding the
session can be stored within the context of the LMS course.
Furthermore, at the end of the game information concerning
each players’ performance can be sent to the LMS and be
used as assessment. The integration with an existing LMS
enables not only the quiz game distribution but also, even
more important, the reuse of the didactic contents stored
within the LMS environment, and thus simplifying the game
development process.

But what we considered to be the more distinctive feature
of Epik quizzes is the possibility to integrate collaborative
mechanisms that enable the interaction between users of the
same team. Epik quizzes include various forms of perception
of the environment that contributes to increased collabora-
tion and competition between players. In the context of a
quiz game, collaboration is promoted primarily through the
use of ”helps”. As already mentioned the game is organized
as a sequence of scenarios, in collaborative mode players are
organized as teams and the progress on the game is only
possible when all members concluded a scenario (or time-
out). To achieve this, team members that have difficulties
on some of the activities of a scenario, can ask for help from
other team members. The ”helps” may be in the form of
pre-defined hints1 that can be given by team members that

1Hints are pre-defined by teachers when building the game.

have successfully completed the associated activity. When
the hint is received the player has a time limit to answer, if
he answer correctly the player that helped receive a bonus.
That is what we call the collaboration points that will con-
tribute to the total score of the player and of the team. An
example of a collaboration sequence is illustrated in Figure
2. In the example (Figure 2(b)), a player (Anakin) asks for
a hint about the upper right question. The system selects a
player (Irina) that already correctly answered the question,
to help him. The player (Irina) that receives the ”help” re-
quest choose and sends the hint (Figure 2(c)). When the
hint is received the player who requested the help (Anakin)
have a time limit to answer the question (Figure 2(d)), if
he answer correctly the player who helped him (Irina) also
receive a score bonus.

3.2 Developer interface
Epik is an online graphical framework to build quiz-based

games. First the developer has to create a project where the
game contents and characteristics are defined.

The Dashboard area (Figure 3) is where developers can
create, edit and remove projects, activities, resources and
manage games already created.

The Development environment (Figure 4) is where the
game scenarios are edited and configured. In this area the
developer can define the scenario layout, scores and helps
associated to the activities, bonus points and also the sce-
narios sequence (game flow). This environment is divided

153

Figure 3: Epik Dashboard screen.

Figure 4: Epik Development environment screen.

into the following sections:

• Toolbar (top): where a set of icons to access tools
to create, access, edit and remove activities, resources
and other scenario components, can be found;

• Navigation Panel (left): enables the navigation be-
tween the game elements. These elements are common
and body scenarios and general game properties. For
each body scenarios its contents, organized in folders,
are listed. When a user select any item in this panel,
this element is presented in the Design Area and all its
configurable properties are presented in the Properties
Panel;

• Canvas (middle): is the design area where the layout
of the scenario is built;

• Properties Panel (right): in this area the configurable
fields, of currently selected element in the Navigation
Panel, can be accessed and edited.

The development of a Epik game goes through several
phases: the creation/selection of activities and resources;
create a design and parameterization of the general prop-
erties; creation of scenarios and their contents; and, finally,
generating the game. Note that these phases do not have
to be performed in this order and some of them can be per-
formed simultaneously.

Figure 5: Epik scenarios, game flow.

4. EPIK QUIZ GAME STRUCTURE
Every Epik quiz game has a sequence of scenarios that fol-

lows a common flow always starting on the ”Start” scenario,
as is illustrated in Figure 5.

At this scenario the player must fill the name and choose
an icon (that will the player avatar throughout the game).
After that, the player must select a button in order to pro-
ceed the game flow. Note that, in case of a collaborative
quiz (multiplayer mode), before starting, the players go to a
waiting room until the team is completed (number of players
defined by the game developer). In both modes, multiplayer
or singleplayer, the player can go the ”Instruction” scenario
that offers a set of information concerning the actual game.
The game can end in one of two scenarios the ”Game Over”
scenario and the ”Ranking”/score scenario. At the middle we
have the ”Body” scenarios, these are created and configured
by the game developers (at the Design Environment) as well
as the sequence that should be followed between them (game
flow). The ”Body” scenarios can be activities or concept sce-
narios. On the first ones is where the activities (quizzes) are
created and configured but there we can also have geometric
forms and resources like text, images and videos usually used
to present the activities. The second ones can contain only
text, geometric forms and resources and are mainly used to
present the concepts concerning the next activities.

After creating and defining all the game structure scenar-
ios and flow, a game can be generated and can be played
within the Epik framework. During a game session all the
information and actions of the players, including the collab-
oration between them, will be managed by Epik. At the

154

Figure 6: A recording session screen.

Figure 7: Evaluation of Epik features

end of a session, if the game was completed, the information
generated about the performance of the players is stored
and will be available for consultation, by the teachers, in
the form of a recording session (Figure 6).

5. EVALUATION OF EPIK QUIZZES
The features of Epik framework, which distinguishes it

from others, are its graphical environment for quizzes devel-
opment and its total integration with the LMS (that support
the IMS LTI standard), namely Moodle. The Epik quizzes
may reuse didactic contents from LMSs, and may be dis-
tributed through the Epik framework or through an LMS as
a learning activity.

The Epik evaluation was made by a group of 12 teachers
of different education areas and levels without any previous
experience with this framework. As can be seen in Figure 7,
the Epik features were considered as ”good” or ”very good”
by the majority of the inquired teachers. In this evalua-
tion most teachers considered the collaborative Epik quiz
features as ”good” or ”very good”, as illustrated in Figure 8.

The environment features of Epik quizzes were evaluated
by a group of 37 students, most of them of computer science
courses. In this evaluation the students considered these
features as ”good” or ”very good”, as can be seen in Figure
9. Moreover, in general, the quizzes were characterized with

Figure 8: Evaluation of Epik quiz collaborative fea-
tures

Figure 9: Evaluation of Epik quiz environment fea-
tures

positive words for most students (see Figure 10).
In order to compare Epik framework with the other frame-

works described in Section 2, we present Table 3 which de-
scribes the Epik features. Note that: Epik quizzes are easy
to integrate and distributed through existing LMS; have col-
laboration and competition features; provides a pleasant en-
vironment, that offers awareness features and is adaptable
to student’ knowledge.

6. CONCLUSIONS
Quizzes are usually used in computer science courses. Ad-

ditionally, the actual student generations are fascinated by
the gaming world, because of the competition and also be-
cause of the natural embedding teamwork, which can pro-
vide collaborative learning in an entertaining way. So, Epik
collaborative quizzes, where a group of students works to-

Figure 10: Characterization of Epik quizzes

155

Table 3: Features of Epik quizzes
General Features

Quizzes Distribution Learning activities on LMS;
Epik framework;

Student Assessment Yes

Environment Features

Feedback Yes
Question feedback;

Final feedback;
Adaptive Yes

questions organized into scenarios;
game paths;

Awareness Yes
player score, bonus, penalties;

teamplayer score;

Collaborative Features

Collaboration Yes
question helps (hints and 50/50)

Competition Yes
individual and team scores;

collaboration bonus;
Epik game ranking;

gether in order to solve a problem, is an asset in the learning
process, particularly in computer science.

Besides the collaboration and competition allowed the or-
ganization of questions in scenarios, embedding didactic con-
tents, questions with ”helps”, and a perceptual and attrac-
tive environment, are characteristics of Epik quizzes that
distinguish them from the other quizzes. Based on our eval-
uation, we can state that these features were very well re-
ceived by teachers and students. Moreover, students con-
sider Epik quizzes as learning activities very enjoyable, use-
ful, innovative and fun.

Regarding the Epik development environment and its func-
tionalities, it is desirable to integrate new question types and
define a set of tools, in the Epik graphical environment, in
order to facilitate the question editing task, or even allow the
association of a file with questions, as is possible in some of
the existing frameworks. However, it should be noted that
Epik allows the reuse of educational content of the LMS,
namely Moodle. This, coupled with its graphical develop-
ment environment, makes the Epik quizzes development an
intuitive and easy task, as was demonstrated in evaluation.

7. REFERENCES
[1] Class maker: a web-based testing service.

http://www.classmarker.com/. Accessed: 2013-06-30.

[2] Educational technology and mobile learning.
http://www.educatorstechnology.com/2012/04/free-
tools-to-create-and-administer.html. Accessed:
2013-06-30.

[3] Epik: Edutainment by playing and interacting with
knowledge. http://epik.di.fct.unl.pt/epik/. Accessed:
2013-06-30.

[4] Moodle. http://moodle.org. Accessed: 2013-06-30.

[5] Proprof: Build and tests knowledge.
http://www.proprofs.com/. Accessed: 2013-06-30.

[6] Quest base. http://www.questbase.com/. Accessed:
2013-06-30.

[7] Quiz revolution. http://www.quizrevolution.com/.
Accessed: 2013-06-30.

[8] Quiz rocket. http://www.quizrocket.com/. Accessed:
2013-06-30.

[9] Socrative: a smart student response system.
http://www.socrative.com/. Accessed: 2013-06-30.

[10] Teacher tools for creating quizzes or polls.
http://list.ly/list/L7-teacher-tools-for-creating-
quizzes-or-polls.

[11] J. Burguillo. Using game theory and competition
based learning to stimulate student motivation and
performance. Computers and Education, 55(2):566 –
575, 2010.

[12] T. Connolly, M. Stansfield, and T.Hainey. An
application of games-based learning within software
engineering. British Journal of Educational
Technology, 38(3):416–428, May 2007.

[13] M. Dickey. World of warcraft and the impact of game
culture and play in an undergraduate game design
course. Computers and Education, 56(1):200 – 209,
2011.

[14] R. Eck and J. Dempsey. The effect of competition and
contextualized advisement on the transfer of
mathematics skills a computer-based instructional
simulation game. Educational Technology Research
and Development, 50(3):23–41, 2002.

[15] W. Huang and J. Tschopp. Sustaining iterative game
playing processes in dgbl: The relationship between
motivational processing and outcome processing.
Computers and Education, 55(2):789 – 797, 2010.

[16] K. Kreijns, P. Kirschner, and W. Jochems. The
sociability of computer supported collaborative
learning environments. Educational Technology and
Society Journal, 5(1):8–22, May 2002.

[17] U. Munz, P. Schumm, A. Wiesebrock, and
F. Allgower. Motivation and learning progress through
educational games. Industrial Electronics, IEEE
Transactions on, 54(6):3141–3144, 2007.

[18] M. Papastergiou. Digital game-based learning in high
school computer science education: Impact on
educational effectiveness and student motivation.
Computers and Education, 52(1):1 – 12, 2009.

[19] B. Sampaio, C. Morgado, and F. Barbosa.
Collaborative quiz development with epik. 5th
International Conference on Education and New
Learning Technologies (EDULEARN13), pages
506–514. IATED, July 2013.

[20] S. Slusser and R. Erickson. Group quizzes: An
extension of the collaborative learning process.
Teaching Sociology, 34(3):249–262, 2006.

[21] J. Torrente, A. del Blanco, E. Marchiori,
P. Moreno-Ger, and B. Fernandez-Manjon.
e-adventure: Introducing educational games in the
learning process. In Education Engineering
(EDUCON), IEEE, pages 1121–1126, 2010.

[22] N. Zea, J. Sánchez, F. Gutiérrez, M. Cabrera, and
P. Paderewski. Design of educational multiplayer
videogames: A vision from collaborative learning.
Advances in Engineering Software, 40(12):1251 – 1260,
2009.

156

Automated Grading and Tutoring of SQL Statements to
Improve Student Learning

Carsten Kleiner
University of Applied

Sciences&Arts
Ricklinger Stadtweg 120

30459 Hannover, Germany
carsten.kleiner@hs-

hannover.de

Christopher Tebbe
University of Applied

Sciences&Arts
Ricklinger Stadtweg 120

30459 Hannover, Germany
christopher.tebbe@hs-

hannover.de

Felix Heine
University of Applied

Sciences&Arts
Ricklinger Stadtweg 120

30459 Hannover, Germany
felix.heine@hs-

hannover.de

ABSTRACT
In this paper we present a concept and prototypical implementation
of a software system (aSQLg) to automatically assess SQL state-
ments. The software can be used in any introductory database class
that teaches students the use of SQL. On one hand it increases the
efficiency of grading students submissions of SQL statements for
a given problem statement by automatically determining a score
for the statement based on different aspects. On the other hand it
may also be used to improve student learning of SQL statements by
enabling them to continuously (re-)submit their solutions and de-
termine improvements in quality by comparing the automatically
determined scores. In order to keep the administrative overhead
for using it minimal we have implemented the software in a way
that it may be plugged into any course/learning management sys-
tem with minimal overhead. We have used it in conjunction with
WebCAT as well as our own proprietary course management sys-
tem. Student feedback collected after its first usage in a database
class shows promising results for future usage of the system.

Categories and Subject Descriptors
K.3 [Computers and Education]: Computer and Information Sci-
ence Education, Computer Uses in Education; H.2.3 [Database
Management]: Languages

General Terms
Computer science education, information systems education, dis-
tance learning, SQL

Keywords
Automated grading, automated assessment, tutoring, learning man-
agement system, SQL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

Koli Calling ’13, November 14-17 2013, Koli, Finland
Copyright is held by the authors. Publication rights licensed to ACM.
978-1-4503-2482-3/13/11 ...$15.00
http://dx.doi.org/10.1145/2526968.2526986.

1. INTRODUCTION AND MOTIVATION
Apart from database schema modeling, learning to use the SQL

query language in a correct and efficient manner is among the most
important goals of an introductory database system course. Whereas
quality of modeling (at least on the conceptual level) seems almost
impossible to assess in an automated or at least computer-assisted
manner, the correctness and efficiency of SQL statements seems
more appropriate to automated or computer-supported grading.

Automated or computer-supported grading is particularly impor-
tant in introductory database system courses, since on one hand the
number of students enrolled is rather large and on the other hand
funds tend to be low and proficient students to perform grading and
support lab sessions are difficult to find. Thus in order to improve
efficiency of the educational institution as well as making individ-
ual assessment feasible, computer assistance is very helpful in this
context.

Another aspect mandating a web-based system to be employed in
computer science education in general is the possibility to provide
students with space- and time-independent access to the outcome
(result and contextual feedback) of exercises they submitted. At
first this improves the attractiveness of the particular institution for
students; also it may improve student learning outcomes since stu-
dents can decide on their own when and how to work on exercises.
It can also be useful to improve performance of students in distance
learning classes by including electronic tutors as described in [12]
for database courses. Thus using a web-based automated assign-
ment grader is highly recommended.

For all these advantages to play a major role, it is not sufficient
to develop and use a tool for a database system course alone. It
is rather important to employ a single system that may be used
in several different courses throughout the curriculum. By do-
ing so, many classes can benefit from the aforementioned advan-
tages. Also usage of the system by the students becomes more effi-
cient and less error-prone since they are already used to the general
functionality and look-and-feel of the software in place. Conse-
quently, we never aimed at building a new course management sys-
tem (CMS). We rather implemented it in a way that it may plugged
into existing CMS with minimal effort. We have used it as a plug-in
to WebCAT ([5]) as well as our university’s proprietary CMS.

We have developed a tool called aSQLg which can perform an
automated assessment of student submitted SQL queries. It may
on one hand be used as a tutoring tool to improve the quality of
the student results. This is achieved by them trying to improve
their scores with repeated submission of hopefully better solutions
based on the feedback. On the other hand it can also be used for
improving efficiency in assignment (or even exam) assessment; in

157

this case the number of possible submissions by a student can be
restricted, thus delivering a fair assessment of the quality of each
solution without the (in this case undesired) tutoring capabilities.
The tool had been used in first experiments based on real database
course assignments with a few students at first. After achieving
some maturity it has been used in our regular introductory database
system classes in 2012 and 2013 in two different departments of
our university. Even though the number of students enrolled is too
small (lower three digit number in total) to derive statistically sig-
nificant results important positive and negative feedback has been
collected and will be discussed here.

This paper is organized as follows: after reviewing related work
in the areas of automated grading as well as support for computer-
supported learning of SQL we will present the concept which forms
the foundation for our implementation in section 3. The concept
will then be illustrated by giving some example statements and re-
sults which have been used in the real course in section 4. There-
after we briefly explain the implementation which further illustrates
the general functionality in section 5. We present some interesting
aspects from the student evaluation in section 6 before we finally
conclude with a summary and ideas for future work.

2. RELATED WORK
Publications related to our work may be roughly categorized into

two areas, namely improving learning of SQL on one hand and
automated grading and assessment on the other hand. Almost no
work to the same level of detail as ours is known in the intersection
of the two which is one of the major contributions of this paper. We
briefly review relevant literature from each of the two areas below.

The first group of related publications focuses on the learning
process of developing SQL queries by students. In [15] an intelli-
gent SQL tutoring system is described. The system has been ex-
tended to use a web-based front-end and is focused on improving
student learning by giving them real-time feedback on the submit-
ted SQL queries. It supports them in working on the queries un-
til they are correct. Similarly [12] describes a tutoring system for
database system courses which is also focused on improving stu-
dent learning by immediate web-based feedback. In contrast to [15]
it seems to also support other aspects of database systems basics
apart from SQL queries. Since the concept we propose in this pa-
per is also targeted towards automated grading within a CMS rather
than only focusing on assisting student learning, the tools described
in the previously mentioned references could complement our con-
cept. Ideas from these tutoring systems could be used to improve
our feedback component in the future.

There are also a number of papers focusing on the grading aspect
of SQL queries: the work described in [17, 18] introduces an as-
sessment strategy for SQL queries that may be used in web-based
tutoring and assessment systems. It is designed in order to improve
student learning since the way students learn is greatly influenced
by the way the assessment is performed. The system focuses on
interactive query refinement rather than a mere grading of a given
solution as in our case. Our grading approach is more complex
and detailed though. In [8] the authors describe a tool (SQLify) for
partially automated grading of SQL queries using an elaborate al-
gorithm for assessment. This tool focuses heavily on peer-reviews
and interaction in order to improve student learning. Thus it still
requires a lot of manual work as opposed to our software. In [4] the
authors sketch a system architecture which seems to include both
a (newly designed) tutoring as well as a scoring component. No
details on the grading component are explained though since the
short article focuses on the overall system architecture.

In [7], an application based on the GNU SQL Tutor (see [1]) is

described. It contains both a tutorial part and an exam part. The
grading part is not explained in detail in the paper. The grading
score seems to be binary for a single question.

SQL-KnoT [6] features question templates, which are used to
generate actual questions increasing the variability. We believe this
feature to be highly valueable in our setting and plan to integrate
similar functionality.

To test whether a given student’s SQL statement is a valid answer
to a given problem, most tools (including our aSQLg), compare the
outcome of the statement with a reference solution. A different
approach for this problem is followed by SQLator [20]. This tool
uses various heuristics to detect equivalence between the solution
and the reference statement. The drawback is that possbily correct
solutions are not detected. An intermediate aproach is followed
by [9], who uses result comparison first to check correctness, and
semantic comparison by heuristic reformulation rules to give hints
to the student.

On the other hand at institutions with a large student to instructor
(or TA if present) ratio one would probably prefer to focus on the
automated grading portion rather than on the interactive approach
to student learning since this increases efficiency. Therefore we
advocate the inclusion of the SQL grading component into a gen-
eral purpose web-based grading tool such as WebCAT ([5]) or gen-
eral purpose CMS such as Moodle. There are also other learning
management systems described in the literature: [16] introduces a
generic automated grading system which may be used for different
types of courses. Good experiences are reported for different pro-
gramming classes; the system is not web-based though, but rather
requires a full client application. Also it is not obvious on how it
could be extended to cater for the specifics of SQL grading without
additional information. Other similar systems for programming or
other computer science courses are described in [10, 11, 14]. In
[19] there is an interesting overview of general purpose as well as
course specific learning management systems (LMS) that had been
introduced in the literature. The overview does not only include
course management but also lists a lot of systems focusing on im-
proving student learning along with an impressive list of references.
Any of the systems listed in the online submission and automated
assessment section of that paper could in principle be used as foun-
dation for implementation of our concept.

3. AUTOMATED SQL GRADING CONCEPT
We will now present the concept of how our SQL grading is per-

formed in detail. The concept is visualized in figure 1 as a flow
diagram starting with loading all statements, which have been pro-
vided. It finishes with setting the points for the graded assignments
and delivering them to the student. The complete flow of all actions
during the grading process is as follows:

1. Load all SQL-statements

2. Check one statement for forbidden elements (optional)

3. Check if the statement equals reference solution (optional)

4. Check for syntactical correctness (points)

5. Check statement cost (points)

6. Check correctness of result of the statement (points)

7. Check statement style (points)

8. After all statements processed: add points & generate report

9. Additional manual grading of statements (optional)

158

10. Update total grade

At the beginning of the grading process all statements of an
assignment are loaded into the plug-in. Optionally it is possible
to load a reference solution, too. After all statements have been
loaded, the statements are analyzed individually, one statement at a
time. The first thing checked is, whether a statement contains for-
bidden elements or not. This step is optional and can be selected
and configured by an instructor. The filter uses a set of allowed
or forbidden elements, so whitelists or blacklists may be used for
filtering. To get all elements of a statement a SQL-parser called
JSqlParser [2] is used. The parser reads a statement and creates a
tree-structure of all elements. Every element is represented by a
corresponding Java class. All values in a statement are saved in
variables of types like Integer, String and so on. Such classes are
used to check whether an element of the statement is allowed or
not. JSqlParser is used in some later steps, too. If a statement is
filtered out by the statement filter, it is ignored in subsequent steps
and the next statement gets checked by the filter.

If a statement is allowed, the statement is compared to the refer-
ence solution. If they match the statement is correct, gains the max-
imum points and the grading is complete for this statement. Be-
cause using a reference solution is optional, this step is performed
only when it is available.

If a statement does not match, the next step is performed. The
test of syntactical correctness of a statement is performed using the
database. We do not use the JSqlParser here as it did not accept all
possible queries according to the specific database system dialect
used (Oracle) in our class turning out to be a major source of frus-
tration on the student side. Syntactical correctness is determined by
using the query cost of a statement. If the result does not contain an
error, the syntax of the statement is correct and the syntactical cor-
rectness points for the statement are awarded. If the syntax contains
errors, the statement is discarded. If the syntax is correct the query
cost which has already been retrieved is evaluated. The instructor
can choose a limit of the maximum allowed cost, to prevent the ex-
ecution of a long running statement which could block the rest of
the statement grading like a denial of service attack. If the query
cost of the statement is not acceptable, the check for correctness is
skipped.

Evaluating the cost of a statement makes sense only, when it
is at least partly correct. That’s why the syntactical correctness
is checked first. The number of points awarded for efficiency de-
pends on how close the query cost of the students statement is to
the reference solution or to a given value from the configuration
file. When the cost is not to high the correctness of the statement
can be checked using the statement in listing 1 which should return
no results.

((< s t u d e n t −s t a t e m e n t >)
UNION

(< r e f e r e n c e −s t a t e m e n t >))
MINUS
((< s t u d e n t −s t a t e m e n t >)

INTERSECT
(< r e f e r e n c e −s t a t e m e n t >)) ;

Listing 1: Statement used to compare the student statement
with the reference solution

In the practical experiments with the students it turned out that
such a strict correctness check led to a lot of frustration. This hap-
pened because students had problems finding the exact correct solu-
tion without any support. Thus we introduced two additional steps

in correctness checking which helped the students correct their pre-
vious errors. At first before executing the statement in listing 1 we
checked if the datatypes of the student and the reference solution
match and are in the correct order. If that was not the case the stu-
dent is informed by a corresponding message. After the execution
in order to be able to verify correct usage of sorting there was an
additional check if the sorting of the student had been the same
as in the reference solution. This check can be activated for each
individual problem as it is not required for all statements. These
changes are subsumed in figure 1 in the box check correctness.

Checking the correctness of a student statement using the state-
ment 1 is only possible if a reference solution is available. If not,
the student’s statement is executed in the database and the result set
is saved for manual grading. If the statement is used, the result sets
of the student statement and the reference solution are compared to
each other. If they match, the statement gets the maximum correct-
ness points possible. Currently partial credit for correctness cannot
be assigned by the automated grading step. If that is desired, an
additional manual grading step by an instructor may be added.

The last automated grading step is the style check of a statement.
In general it is very difficult to assess the style of a SQL statement
as there are no generally accepted rules on SQL style in contrast
to e.g. Java. Thus we decided to use a set of rules which describe
what a SQL statement should look like these have been taken from
different sources. aSQLg is delivered with a small list of rules de-
scribing a general style. This list does not cover a complete style
description, hence a complete list of rules has to be generated by the
instructor. The number of points awarded during this step depends
on how many style rules are followed by the student statement.

Now all checks for the statement have been executed. If there
are statements left, the next statement is chosen to be analyzed by
our grader. If the last statement has been checked the total points
of the automated grading part are calculated. Additionally reports
about the single grading steps are generated, which contain errors
that may have occurred and other information including the num-
ber of points received by each statement in every step. The reports
are shown to the student in the regular GUI of the CMS used. The
number of available points for a statement in each step may be set
in a configuration file. The four grading steps for syntactical cor-
rectness, cost of the statement, result correctness and style are eval-
uated. The weight of the different grading steps may as well be set
in the configuration file. If maximum points for one of the grading
steps is set to 0, the step is skipped during grading.

After the report generation and point calculation the statements
can be optionally graded manually by an instructor. This step may
be included directly into the CMS, e. g. by a special web form. The
instructor has total access to the results of the automatic grading
steps performed. The main task of the instructor normally is to
check the correctness of the students statement, if the correctness
could not be verified during the automated part. The instructor may
award additional points to the student.

One point to consider is the danger of SQL-injection attacks on
the database used to analyze and execute student statements. Mali-
cious students could try to attack the database. In our concept this
is not really an issue, because of two things: all students have read
access to the database schema used for the queries anyway and no
student query is ever directly executed on the system. They are just
executed in the context as explained in listing 1. Thus in combi-
nation with correct setting of access rights to system tables by the
database administrator students cannot perform an insider attack.

Some students may try to get full credit without learning and
working on the statements. For example, if a task of an exercise
demands a complex statement, which just returns one number as

159

equals
solution?

statements
of students

start load statements

end

filter statement

one statement

statement
allowed?

compare
(if possible)

syntax
correct?

DB access?

check cost

cost to high?

check
correctness

check style

statements
left?

create report
(with points)

statement
solutions
(optional)

no

yes

no

yes no

no

yes

yes

no

yes

no

yes

check syntax

manual check
(optional)

optional

update points

Figure 1: Flow diagram of the different steps in our SQL-statement Grader (based on [13])

result, a student could decide to cheat. When the statement result is
5 the student could use the statement "SELECT 5 FROM DUAL",
which would return the correct result, without really working on
the task. Countermeasures are needed to prevent this. That is why
the filter is used at the beginning of the analyses process. Using the
filter, usage of the table "DUAL" can be prevented. Alternatively
execution of a statement on different datasets is possible which can
also prevent such simple cheating attempts.

There is no semantic analysis of the provided solutions in com-
parison to the reference solution (i. e. comparison of query trees)
so far. This would facilitate assigning partial credit for almost cor-
rect solutions. This feature is on the list of open issues for a future
version of the system and would be an addition to the correctness
check.

The described concept covers the whole grading process of SQL-
statements. Nearly all checks are automated and statements con-
taining forbidden elements can be identified and discarded. Only
checking the results of partly correct statements has to be done
manually. The syntax check and the filter need manually created
lists to work properly, but the execution is done automatically. The
only thing not mentioned so far is the identification and prevention
of plagiarism, which figured out to be to complex to implement
during the project.

4. SOME EXAMPLES
In this section, we present a real-life example showing how the

grader was used during a first year database course. Part of this
course was an introduction to SQL, which was accompanied by
tutorials and about 40 SQL exercises of increasing difficulty.

The chosen example refers to an exercise from the beginning
of the SQL tutorial. It uses the well-known Oracle example table

employees. The task was to select every employee (first and last
name as a single string) and the year of the hire date. The result
had to be sorted by hire year and last name. A valid solution was:

SELECT first_name || ’ ’ || last_name name,
TO_NUMBER(TO_CHAR(hire_date, ’YYYY’)) hired
FROM hr.employees
ORDER BY hired, last_name;

We now describe a simplified log of a student trying to solve
the task. The first upload to aSQLg contained the following SQL
statement:

Select First_Name||’ ’||Last_Name,
to_char(Hire_Date, YEAR)
from hr.employees
order by Hire_Date, Last_Name;

The syntax check of the grader failed, delivering a message to
the student including the original database error: ORA-00904:
"YEAR": invalid identifier. Due to the incorrect syn-
tax, all further checks were skipped. In the following attempt, the
student fixed the syntax error:

... to_char(Hire_Date, ’YYYY’) ...

Now the syntax check succeeded, so the grader could proceeded
with the cost check, which turned out to be uncritical. In the next
step, the column count was compared with the correct solution,
which also succeeded. However, the data type check failed, be-
cause column two returned a character value while a numeric value
was expected. The following message was shown:
Datatype of column 2 is wrong.

160

Expected: NUMBER, your solution: VARCHAR2
The student went on with this solution:

... to_number(to_char(Hire_Date, ’YYYY’)) ...

This change corrected the problem, so the grader now confirmed
that the column count and data types were correct. The row count
and row contents were also correct. The final error message was
stating that the result rows were not sorted as expected, because
the order by columns were still wrong (sorted by the whole
hire_date instead of only the year). In the final submission,
the student responded to this hint:

Select First_Name||’ ’||Last_Name,
to_number(to_char(hire_date,’YYYY’)) AS datum
from hr.employees
order by datum,Last_Name;

Finally, the student was informed that the solution had been fully
correct and that the full score had been recorded. Only warnings
remained about the naming of the columns of the result, because of
the differences to the proposed solution.

Summarizing, the example shows how the detailed messages
generated by aSQLg can guide a student step-by-step towards the
correct solution of a given exercise.

5. IMPLEMENTATION OVERVIEW
Our system consists of six modular components. Together all

of this components implement the grading environment, facilitate
statement grading, perform the grading steps and the generation of
reports.

The goals of the implementation architecture are:

1. Modular structure

2. Extensibility of SQL dialects supported

3. Possibility of reuse for modules in other projects

4. Adaptable for different e-learning platforms with minimal
programming effort

Figure 2 shows the components and their relationships. This
structure makes it possible to easily adapt the statement grader to
other environments than WebCAT by changing only a single com-
ponent.

In the sequel we will briefly describe each of the components.

5.1 aSQLg Core
The aSQLg Core embeds the plug-in into the hosting environ-

ment system, e. g. WebCAT. This component configures the other
components and implements the overall flow control for SQL grad-
ing.

The configuration of all other components is done in the order
Reporter, StatementLoader, StatementViewBuilder, StatementFil-
ter and StatementTester. While the first step sets up the reporting
engine, the next two steps do the necessary groundwork to trans-
form statements into an internal structure in order to be able to
grade them. The StatementTester finally performs the actual grad-
ing steps with help of the CheckStyle component.

5.2 Reporter
The Reporter component collects information, that is generated

by the other components, and creates report files. This component
is used by most of the other components.

Information is generated for two receivers. The main receiver is
the student who receives general information on the grading pro-
cess, error notes and warnings for his statement as well as the
awarded points. The instructor and assistants receive all this in-
formation on demand as well. In addition they have the option to
add comments and points in the manual grading step. Finally in-
structor or system administrator receive detailed information about
configuration errors and database failures.

There are two types of messages used to submit all of the above
pieces of information. Plain messages have a simple text or XML
content. Referenced messages also have a text or XML content but
in addition contain information about the code position, to which
the message refers. The latter makes it possible to show a code
fragment within the results and mark the position where an error
occurred - a helpful feature for grading assistants.

After the completion of the grading process the reporter gener-
ates an XML formatted report. This report can be converted by an
XSLT stylesheet. By default the report is converted to XHTML,
but the WebCAT plug-in package comes with a specialized trans-
formation file to embed the reports into the WebCAT user interface.

5.3 StatementViewBuilder
For grading of SQL statements, in addition to the plain syntax,

one needs a structured representation of the statement. For instance
one of the tokens may belong to the blacklist of forbidden elements
when used as a table name whereas it may be allowed as column
name. Thus the StatementViewBuilder component builds a struc-
tured object view of a statement in form of a tree.

The information about the semantics of a token can be gained
by parsing the statement. Our implementation uses a combination
of JSqlParser [2] with our own simple extension. By implement-
ing a different StatementViewBuilder interface this base is easily
changeable. For each token in the statement a node in the State-
mentView tree is generated. This node contains the string repre-
sentation of the token, as given in the input statement, a syntax
type and a semantic type. The main syntax types occurring are
keywords and parameters. The semantic types used vary from ta-
ble, over column to numbers and texts.

5.4 StatementFilter
Giving students the possibility to submit any statement for grad-

ing by a central server, may incur a security risk as well. Even if not
intended a statement might be harmful for the system. E.g. in the
case where the instructor requests the statement DROP Student-
Table a student could send the statement DROP Instructor-
Table. Our StatementFilter component analyzes statements sub-
mitted in order to prevent such insider attacks. Denial of service at-
tacks by inefficient statements are handled by the StatementTester
later on.

The base for the StatementFilter is the previously generated State-
mentView. The filter can be configured by either using a whitelist
of allowed or a blacklist of forbidden elements. Such elements will
be detected by the StatementView. If one of it exists, the state-
ment will be marked illegal, is never executed and a message to the
student is generated.

5.5 StatementTester
The StatementTester is the central component of the grading pro-

cess. It has two main functions, statement loading and execution of
the statement.

The loading step includes reading SQL statements (as strings),
using the StatementViewBuilder to form a StatementView and fi-
nally point allocation. All statements are loaded from files sub-

161

Figure 2: Overview of the components for implementation of aSQLg

mitted by students. Statements can have a reference statement, a
solution given by the instructor. Student statements are compared
against the instructors statement.

Allocation of points may consist of the following components:
syntax check, query cost check, result check, style check and man-
ual grading. For each of these aspects a maximum number of points
may be defined by the instructor. Apart from the correctness com-
ponents (syntax and result) where only full or no credit is possible
for an individual statement, partial credit is possible.

After all the groundwork the actual grading is performed for le-
gal statements. As the grading depends on the particular database
system we use a "default" StatementTester class which may be
extended to cater for specific systems. We use an OracleState-
mentTester extension in our classes. The default implementation
may also be used as a fall back. It provides checks that can be used
if there is no specific SQL dialect to be used.

The default StatementTester implements the general flow of the
check as explained in section 3. The result check for SELECT
statements is performed by comparing the results of the students
statement and the instructors statement. If they are identical, the
step is passed and full credit awarded. The syntax check in the
generic tester is done by parsing the statement with the zql parser
[3]. If the statement can be parsed, the syntax is correct, otherwise
the parser throws an exception with the information of the line and
column where a syntax error exists. This information is added to
the reporter data to be provided to the student later on. The last step
is the style check. It uses the CheckStyle component.

The OracleStatementTester uses the possibilities of the Oracle
database and checks the statement for the Oracle specific SQL di-

alect. Here the syntax check is performed by using functions for
calculating query costs. These functions return an error, if the state-
ment contains a syntax error. The query cost check uses the result
from the previous syntax check, because it is computed there any-
way. The result and style check are performed using the implemen-
tations of the default StatementTester.

5.6 CheckStyle
Base for the CheckStyle component is the StatementView with

its syntactic and semantic information. The instructor may define
a style rule file. Each rule defines to which syntax and/or semantic
type it is applicable. Furthermore rules can be defined for special
keywords. As there is no commonly accepted good style for SQL
queries so far, this part is completely configurable by the instructor.
A foundation observing some of the most commonly rules for good
style is provided as a reference.

6. EVALUATION
As mentioned earlier aSQLg has been used in our introductory

database system classes in two different departments in 2012 and
2013. SQL statements have not only been assigned in aSQLg but
classical paper assignments have also been used. On one hand that
reduced the risk associated with employing a completely new and
unproven tool. On the other hand that put the students in the posi-
tion to better compare the two approaches and make informed judg-
ments about the usefulness of automated SQL grading. In addition
to the regular student course evaluation an online survey specif-
ically targeted at the evaluation of the usage of aSQLg has been
administered. In total 114 students (about 80 % of students en-

162

Figure 3: Exemplary results from student survey

rolled in the class) submitted answers to this specific survey which
consisted of 16 questions.

Some interesting results from the survey are displayed in figure
3. They show that about 60% of the students felt supported a lot
or more by aSQLg in finding a solution (and only just over 10%
did not feel supported at all). This supports the claim that there
is potential for being used as a tutoring system as students believe
in the tool helping them find solutions. Consequently almost 40%
reported that the immediate feedback was the most helpful feature
of the tool.

Motivation by students to dig deeper into problems when they are
encountered is increasingly difficult to achieve; this in our experi-
ence is particularly true for SQL and database classes in general.
In the case of aSQLg 70% of the students were motivated a lot or
more by the tool to further analyze their errors in more detail. This
is an extremely good and promising result. Maybe that has also led
to the better student judgment of the whole course when compared
to previous years.

Still most students (about 70%) expected manual grading to be
fairer than automated grading, probably because they (just over
50%) did not like that just the result of the submission counts as
opposed to the way of determining it which might be taken into
account during manual grading. In a future version of aSQLg we
would like to (at least partially) replace the result-oriented assess-
ment with a semantic assessment. That kind of assessment would
be able to compare the query tree of the ideal solution structurally
against the submitted solution and thus value the way of solving
the problem better even if there is a minor error which may ren-
der the result completely wrong. This would also remedy the most
significant negative aspect of the system (30%, cf. Fig. 4).

Just over 10% of the students feared that students would tend to
work alone instead of in teams as a consequence of using aSQLg
and just over 15% stated that an advantage of the tool would be
reduced need for personal instruction (cf. figure 5). Also about
25% said that reduced personal contact to the instructor might be
the most significant drawback. These results show that as far as
tutoring is concerned automated grading can be a good addition but
will and should in general not replace personal lab sessions. Again
students feared most that grading would be reduced to a comparison
of results instead of valuing the way that has been used to find a
solution, see above.

On the positive side from a student’s perspective the immediate
feedback to their solutions has been the most important significant

Figure 4: Most significant negative aspect of automated grad-
ing (percentage of students agreeing)

Figure 5: Most significant positive aspect of automated grading
(percentage of students agreeing)

aspect (almost 40%). Also aspects relating to distance education
and electronic self-guided learning such as no need for personal in-
struction (18%), remote submission feature (17%) and more free-
dom in time management (12%) have been named often by the stu-
dents. This supports the claim about the positive impact of aSQLg
for electronic tutoring and distance education.

Finally, even in its first two instances the tool worked pretty good
already with very few false negatives (would be very frustrating
for students) and almost no false positives. Nevertheless students
would not like to see it being used in exams (just over 50% said not
at all suitable). That is probably because as long as there is at least
a minimal chance of a false negative assessment students fear to be
penalized in their grades for an erroneous software. Almost 60% of
the students would like to see aSQLg be used in advanced database
classes again and about 40% would like to use automated grading
in other classes, too.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented a concept for automated assess-

ment of SQL statements. The proposed algorithm uses the follow-
ing aspects of the statement submitted in order to determine the
score: syntactical correctness, efficiency of statement, correctness
of results and style. Apart from these automatically assessed di-
mensions where points for each part are configurable it is also pos-
sible to assign points in a manual grading step as well. Finally in
order to be able to practically use the software and prevent harm
from the system by students submitting malicious solutions we
have added the following features. There is the possibility to use
black- or white-listing for allowed parts of the statement. More-
over statements beyond certain configurable efficiency bounds are

163

not executed in order to prevent denial of service attacks.
We have already used the system with individual students in a

lab environment as well as in introductory database classes in two
different departments at our school in 2012 and 2013. In efforts to
get personal feedback and be able to make the system as student-
friendly as possible, valuable input by the students has already been
used in improvement steps of the system. We also received several
of the ideas on how to attack the system in these lab sessions.

The system may both be used as an electronic tutor as well as
for efficient course management. In the first case it guides the stu-
dents to better results by them trying to increase the automatically
assigned score. It also simplifies to take part in lab sessions for
students who cannot or do not want to attend sessions on campus.
For the second case it should be used in conjunction with a CMS.
To achieve fair scores for the students in this setting the number of
possible submissions should be restricted. Still manual grading (at
least partially or to double-check the automated results) is possible
within this framework if desired by the instructor.

The gain in efficiency by using the system as compared to pure
manual assessment is obvious. This is because a completely man-
ual grading process is still possible and just using the correctness
check for instance is already an improvement over manual check-
ing. The improvement in student learning by being able to sub-
mit result candidates multiple times and improve on the solution
by comparing automatically computed scores which are shown as
immediate responses has been the second goal of the system. This
goal seems achieved partly already when looking at the feedback in
figure 3. Also the student responses improved from 2012 to 2013
showing that the improvements in the system have been valued.
Nevertheless the system is not yet perfect as some false negatives
show, we will further have to work on that. Similarly assignment
of points to different grading steps for different problems and at
different points in a course needs to be further elaborated.

To further improve on the tutoring capabilities it would be very
interesting to integrate our assessment system with one of the tu-
toring systems described in section 2. Thus one would obtain an
even more valuable SQL learning tool for student self-study. The
tutoring capabilities in addition to the score related feedback would
be a perfect combination for self learning. Thus distance learning
would be even more simplified as students can submit the solutions
from any place and use the responses to improve their results an
their own.

In addition in the near future we will plug the software into the
new university-wide CMS lonCAPA. As explained above architec-
ture and design simplify moving to such different hosting systems.
Also we plan to publish the code once the system has reached pro-
duction maturity for use at other institutions and also to get more
feedback from a wider audience.

Finally the correctness check could be significantly improved by
performing a semantic comparison of student and reference solu-
tion. An extended statement parser is needed for this check; this
will be part of a future version of aSQLg .

We would like to thank Andreas Stöcker and Florian Fehring for
supporting implementation and student evaluation for aSQLg .

8. REFERENCES
[1] GNU SQL tutor - website.

http://www.gnu.org/software/sqltutor/. (visited on
16.09.2013).

[2] JSqlParser - website. http://jsqlparser.sourceforge.net/.
(visited on 23.07.2011).

[3] ZQLParser - website. http://sourceforge.net/projects/zql/.
(visited on 18.08.2011).

[4] A. Abelló, E. Rodríguez, T. Urpí, X. B. Illa, M. J. Casany,
C. Martín, and C. Quer. LEARN-SQL: Automatic
Assessment of SQL Based on IMS QTI Specification. In
ICALT, pages 592–593. IEEE, 2008.

[5] R. Agarwal, S. H. Edwards, and M. A. Pérez-Quiñones.
Designing an adaptive learning module to teach software
testing. SIGCSE Bull., 38:259–263, March 2006.

[6] P. Brusilovsky, S. Sosnovsky, M. V. Yudelson, D. H. Lee,
V. Zadorozhny, and X. Zhou. Learning SQL Programming
with Interactive Tools: From Integration to Personalization.
Trans. Comput. Educ., 9(4):19:1–19:15, Jan. 2010.

[7] A. Cepek and J. Pytel. SQLtutor. In Professional Education
2009 – FIG International Workshop Vienna. FIG Fédération
Internationale de Géomètres, 2009.

[8] S. Dekeyser, M. de Raadt, and T. Y. Lee. Computer Assisted
Assessment of SQL Query Skills. In J. Bailey and A. Fekete,
editors, ADC, volume 63 of CRPIT, pages 53–62. Australian
Computer Society, 2007.

[9] R. Dollinger. SQL Lightweight Tutoring Module – Semantic
Analysis of SQL Queries based on XML Representation and
LINQ. In Proceedings of World Conference on Educational
Multimedia, Hypermedia and Telecommunications 2010,
pages 3323–3328, Toronto, Canada, June 2010. AACE.

[10] C. Douce, D. Livingstone, and J. Orwell. Automatic
test-based assessment of programming: A review. ACM
Journal of Educational Resources in Computing, 5(3), 2005.

[11] X. Fu, B. Peltsverger, K. Qian, L. Tao, and J. Liu. Apogee:
automated project grading and instant feedback system for
web based computing. In J. D. Dougherty, S. H. Rodger,
S. Fitzgerald, and M. Guzdial, editors, SIGCSE, pages
77–81. ACM, 2008.

[12] C. Kenny and C. Pahl. Automated tutoring for a database
skills training environment. SIGCSE Bull., 37:58–62,
February 2005.

[13] C. Kleiner. A concept for automated grading of exercises in
introductory database system courses. In Proceedings of the
7th International Workshop on Teaching, Learning and
Assessment of Databases (TLAD), 2009.

[14] L. Malmi, V. Karavirta, A. Korhonen, and J. Nikander.
Experiences on automatically assessed algorithm simulation
exercises with different resubmission policies. ACM Journal
of Educational Resources in Computing, 5(3), 2005.

[15] A. Mitrovic. An intelligent sql tutor on the web. I. J.
Artificial Intelligence in Education, 13(2-4):173–197, 2003.

[16] R. E. Noonan. The back end of a grading system. In
D. Baldwin, P. T. Tymann, S. M. Haller, and I. Russell,
editors, SIGCSE, pages 56–60. ACM, 2006.

[17] J. C. Prior. Online assessment of sql query formulation skills.
In T. Greening and R. Lister, editors, ACE, volume 20 of
CRPIT, pages 247–256. Australian Computer Society, 2003.

[18] J. C. Prior and R. Lister. The backwash effect on sql skills
grading. In R. D. Boyle, M. Clark, and A. N. Kumar, editors,
ITiCSE, pages 32–36. ACM, 2004.

[19] G. Rößling, M. Joy, and et al. Enhancing learning
management systems to better support computer science
education. SIGCSE Bulletin, 40(4):142–166, 2008.

[20] S. Sadiq, M. Orlowska, W. Sadiq, and J. Lin. SQLator: an
online SQL learning workbench. In Proceedings of the 9th
annual SIGCSE conference on Innovation and technology in
computer science education, ITiCSE ’04, pages 223–227,
New York, NY, USA, 2004. ACM.

164

Communication Patterns in Collaborative Software
Engineering Courses: A Case for Computer-Supported

Collaboration
Antti Knutas

Lappeenranta University of
Technology
P.O. Box 20

FIN-53850 Lappeenranta, Finland
+358-0294-462-111
antti.knutas@lut.fi

Jouni Ikonen
Lappeenranta University of

Technology
P.O. Box 20

FIN-53850 Lappeenranta, Finland
+358-0294-462-111

jouni.ikonen@lut.fi

Jari Porras
Lappeenranta University of

Technology
P.O. Box 20

FIN-53850 Lappeenranta, Finland
+358-0294-462-111
jari.porras@lut.fi

ABSTRACT
Collaboration has become an important teaching method in
software engineering and there are several computer supported
collaboration tools to aid the development and learning process.
However, most studies have concentrated on intra-group studies.
We believe that computer supported collaborative learning tools
can also aid software engineering students to have beneficial
inter-group collaboration. In this research the communication
patterns in three collaborative software engineering courses were
analyzed with the method of social network analysis. It was found
out that students do collaborate, but mostly along pre-established
social connections. The main reason for this was the difficulty in
matchmaking and discovering others who were struggling with
the same problems. Our proposal is to study how students in
similar learning scenarios benefit from computer supported
collaborative tools that increase networking opportunities. The
findings presented in this paper provide a baseline for comparison
when performing social network analysis in future studies.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in Education
– collaborative learning.

K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education.

General Terms
Measurement, Documentation, Experimentation, Human Factors.

Keywords
Collaborative learning, computer supported collaborative
learning, social network analysis, software engineering education

1. INTRODUCTION
University education and information technology teaching are
going through a time of change. Learning is changing to be more
interactive and the importance of collaborative learning and

teamwork has grown [21]. At the same time intensive courses and
team-based rapid development methods are growing more popular
in software engineering education. In these approaches the goal is
not only to have the students cooperate in groups, but to help each
other achieve their learning goals by collaborating, for example by
sharing newly learned knowledge with each other and then
applying it to improve their group work. These methods have
been proven to work in tertiary level education in both domestic
and international studies [8, 25, 26].

However, there has been little research in how the presence of
multiple groups in the same workspace affects the patterns of
collaboration and if there are methods of arranging the group
work in a manner that groups can benefit from each other’s
presence. There has been research into computer supported
collaborative learning (CSCL) tools that enhance communication
within classrooms, but again little research in inter-group
communication. This suggests towards there being a research gap
in applying CSCL learning tools to inter-group collaborative
learning, which we believe to be possible and beneficial.

Collaborative learning in intensive courses (the Code Camp
course series) has been studied previously in Lappeenranta
University of Technology [2, 25, 26] and collaborative teaching
courses in general have been studied generally [16, 24], but there
have been no detailed research into inter-group communication.
From observations in earlier studies it can be seen that intra-group
communication occurs and some students feel that it is a
beneficial part of the course [2], but more exact communication
patterns and how they affect information traversal in student
groups is still unclear. This gave the motivation to perform a more
rigorous study on how the student communication actually occurs
during the courses. Three Code Camp courses were selected for
observation in order to map and analyze the student
communication. The main research questions are:

1. How students utilize different communication channels
during courses for collaboration?

2. Which kinds of patterns of collaboration emerge during
the course, especially between different student groups?

3. Are there any available resources present in the
classroom environment that could be changed to
encourage more comprehensive communication or
cooperation?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
Koli Calling ’13, November 14–17, 2013, Koli, Finland.
Copyright 2013 ACM 978-1-4503-2482-3/13/11…$15.00.
http://dx.doi.org/10.1145/2526968.2526987

165

In order to identify emerging communication patterns in student
communication in the course, the student communication that
occur during courses must be mapped first. Information for the
study was gathered with individual surveys, recording time-lapse
video for analysis and team interviews, after which patterns of
collaboration were analyzed by modeling the communication
patterns with the help of graph theory. The study aims to find
repeating patterns with the help of social network analysis and to
identify communication patterns, which could be improved with
the help of CSCL tools. If any repeating patterns are found, this
study can provide requirements for the next step of research,
which is to implement a new CSCL system to address any found
issues. The research results from this study also provide a baseline
for comparison when social network analysis is applied to the
improved courses.
The rest of the paper is organized as follows: the section two
covers related research, the section three covers the research
methods, how the research was performed and the research
results, the section four analyses and discusses the results and the
section five presents the conclusions.

2. COLLABORATIVE LEARNING
METHODS IN SOFTWARE ENGINEERING
EDUCATION
Collaboration has become an important subject of in education
[13] and has been established as an essential part of 21st century
skills [6]. In a collaborative learning environment, students can
experience new approaches to thinking from their peers and can
obtain a clearer perspective of a topic by expressing their
understanding [11]. In a study by Chen et al. [7] computer
supported collaborative learning tools were applied to a
collaborative classroom setting, where both face to face and
electronic interactions occurred, the tools used enhanced
classroom communication across different groups. The
intertwining of online and face-to-face collaboration was shown to
unify and strengthen the collaborative learning experience [7].
However, care must be taken in applying the CSCL (computer
supported collaborative learning) tools in classroom, taking into
account existing social structures and pedagogical approaches [3].

Collaboration in general has been shown to be beneficial to
learning software engineering [25] and that it improves both the
motivation and student performance in learning programming
[19]. The use of computer supported collaborative learning tools
specifically in software engineering education courses is also
established and it has been shown that students can collaborate
directly using computer collaboration tools [9] with beneficial
results, share information using messaging and annotation
services [17] and collaborate in groups using groupware software
[5] or wikis [20]. However, we found no evidence of studies
concentrating on the research of how introducing CSCL tools
affect inter-group interactions. This research gap could be
addressed by researching how collaboration social networks in the
classroom function and if there are any problem spots that could
be addressed with the introduction of CSCL tools.

The problem of analyzing classroom interaction can be
approached with social network analysis. Social network analysis
(SNA) is an interdisciplinary technique for the analysis of social
networks [22], where social relationships are viewed in the terms
of network theory. In social network analysis communication
between individual or social units are mapped into a
communication matrix and then visualized in graphs. In graph

theory there are different mathematical tools available, which can
be used to for example estimate the relative influence of nodes in
the graph or analyze the graph by the nodes’ connection patterns
[1, 14]. In this research case the communication patterns of
different groups could be analyzed by modeling students as nodes
and mapping student and intra-group communication as node
edges.

This kind of analysis has been applied to collaborative learning by
[27] to model collaboration in distance learning groups and was
applied with additional qualitative analysis to CSCL classroom
learning scenarios [18]. They found out that it is possible to apply
SNA to CSCL scenarios, but Martinetz et al. [18] concluded main
difficulties were related to the speed of processing. More
specifically, it is difficult to gain results fast enough to provide
corrective feedback during the progress of the course.
Additionally, the process depends on the expertise of the
researcher and it is difficult to automate.

3. COMMUNICATION PATTERNS IN
INTRA-GROUP STUDENT
COLLABORATION
The study about observing student communication patterns in
software engineering course was carried out during three five days
long collaborative courses. At the start of the course the students
were first divided into work groups and were assigned a
programming task with a deadline, but were allowed rather freely
to decide how to achieve their goal. While the students worked
towards their goal, their inter-group communication was observed
both by a researcher and by automated tools, which was later
analyzed with SNA analysis methods.

The Code Camp style intensive courses last five days, with the
course structure clarified in the Figure 1. The course starts with a
technical introduction and task assignment in a traditional
lecturing environment. Usually at this point no groups are formed,
though there is some informal chatter between some students and
some study groups have been known to agree to form a group.
After the first day’s lectures and the task assignment, a social
event is held where the students are allowed to get to know each
other more and form groups for the next day. The following days
concentrate on actual implementation work and during the last
day there are student presentations and a friendly competition
between the project works.

Figure 1. Code Camp course outline

During the course most of the information was first made
available through a lecture, but the course had a supporting wiki
page for distributing and coordinating information. Course
material was made available there, including lecture slides,

166

software tools and schedules. All students had edit access for the
wiki and there was a course requirement of each team creating a
wiki page for group coordination. From the student group’s point
of view these wiki pages were used as communication hubs, with
team members updating their project status and uploading course
deliverables there. The wiki had no access restrictions; so all
participants of the course were free to examine all available
materials.

There were two levels of support during the course: Collaborative
and teacher-provided. During the course, the students and the
groups were allowed to freely communicate with each other and
share code to solutions with face-to-face communication or with
online tools. In addition to being present in the classroom
constantly during the course, the teachers entered most often
asked questions into the Q&A wiki page, linked to code examples
and uploaded course materials like lecture slides.

3.1 Research Setup
The observation of the communication patterns was performed by
three different methods: Direct observation of the students by
having one researcher present in the classroom and observing the
conversations, time lapse video monitoring of the groups
interacting in the classroom and recording wiki activity on the
web server. After the course had ended, both the students and the
teaching personnel were asked to fill a survey about their usage of
resources to gain additional data to supplement the direct
observations. Additionally in the second and third observed
courses the teams were interviewed using a qualitative approach
in order to gain better insight to the interactions and to try to
detect interactions that were considered but were not taken. The
questions that were asked in the interviews were:

 What went well?

 What didn’t go well?

 How did you cooperate with other teams?

 Were there any reasons why you were not able to
collaborate with the other teams?

The interviews were performed using a semi-structured format.
When the teams answered to the questions, further questions
based on the teams’ answers were presented, especially if they
mentioned any factor that affected teamwork or communication
positively or negatively. After the graph visualization was
completed, the interviews were studied in order to gain
perspective how each individual group perceived the effect of
communication on their work. Additionally, any factors that
affected communication, intergroup cooperation or teamwork
were noted and collated.

The main source for the interaction data was video monitoring.
The classrooms were monitored with two web cameras that
covered the observed groups and captured single images at a pace
of an image per second, or six images per second when motion
detected in the room. When these single images are converted into
video frames they form a time-lapse video that allows the entire
five day event to be viewed at a rapid speed. The following data
was recorded from the video for further analysis:

 Time of communication

 Type of event (lecture, active group work, break)

 Initiating group member

 Receiving group (or teacher)

The following additional data was gathered with the surveys:

 Group the student most often preferred to collaborate
with

 How often the student asked the assistant for help

 How often the student used online resources

 How often the student collaborated with other teams

After each course the videos were first analyzed and the
interactions recorded and then collated. The surveys and
researcher’s observation notes were used to set context for each
interaction. After collating the interactions graph theory and social
network graphing software are used to form social network
interaction graphs of the physical interactions occurring in the
classroom.

3.2 Methods of Analysis
The patterns of collaboration were analyzed by modeling the
communication patterns with the help of graph theory. Each
interaction, the interaction context and reason for the interaction
were recorded from the available raw material. The lists of
interactions were collated into a directed graph, where the nodes
represent individual students and the edges represent
communications between the nodes. The graph was analyzed by
inputting it into the graph analysis software Gephi [4] and using
the visualizations produced by the software to identify influential
nodes, strength of cooperation between groups and repeating
patterns of collaboration between the nodes. The analysis software
uses the Force-Atlas algorithm to map the nodes, taking into
consideration the relative importance (size) and connection
strengths of the nodes [10].

In order to gain more understanding into the arrangements of the
nodes into the graph, influence analysis was performed on the
graphs using the PageRank indexing algorithm [23], which can
also be used to measure influence of nodes in social networks [12,
28]. For example the influence of Twitter users has been
researched with this SNA approach [15, 29]. The algorithm
calculates a probability distribution for arriving to a specific page
in a graph representing the links of a set of hypertext documents.
The values returned by the algorithm are normalized so that the
sum of values is 1. An essential part of the PageRank algorithm is
the dampening factor, which causes pages that have few links to
important pages to be valued more highly than pages that have a
wider array of more random links [23].

The PageRank algorithm is expressed in the Equation 1, where the
𝑃𝑃𝑃𝑃(𝐴𝐴) is the PageRank of Page A, 𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇) is the PageRank of
pages 𝑇𝑇𝑇𝑇 which link to page 𝐴𝐴, 𝐶𝐶(𝑇𝑇𝑇𝑇) is the number of outbound
links on page 𝑇𝑇𝑇𝑇 and 𝑑𝑑 is a dampening factor which can be set
between 0 and 1, but is usually set to 0.85. PageRank or 𝑃𝑃𝑃𝑃(𝐴𝐴)
can be calculated using a simple iterative algorithm, and
corresponds to the principal eigenvector of the normalized link
matrix of the web.

𝑃𝑃𝑃𝑃(𝐴𝐴) = (1 − 𝑑𝑑) + 𝑑𝑑 (𝑃𝑃𝑃𝑃(𝑇𝑇1)/𝐶𝐶(𝑇𝑇1) + . . .+ 𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇)/𝐶𝐶(𝑇𝑇𝑇𝑇))

Equation 1. The PageRank algorithm. [23]

167

3.3 Observed Communication Patterns
Three courses were observed during a one-year period, with a
total of 42 students spread across fifteen student groups. The
studied courses were optional and attracted students with varying
backgrounds from different majors, but are generally master’s
level students.

In the first course eight groups were formed at the start of the
course, seven of which completed the course and were selected
for analysis for a total of twenty students. 44% of the participating
students had attended an Code Camp –style events before this
course. One group was left out from the study, because the
members left the course before the end of the second day and did
not participate in the activities.

Students actively collaborated both inside their groups and
between the groups during the observed courses. The groups
formed communication patterns that were modeled into graphs
and are presented later in this section. Each node represents a
student and the edges connecting the nodes represent
collaboration-related communications that occur between each
individual student. The thicker the connecting line in the figure,
the more often the group member participated in the
communication, with the relative strength of the communication
rated from one to three. For example, in the Figure 2 the
connection between D1 and D3 is level three, D3 and A1
connection level two and the D1 – F1 connection level one. The
relative sizes of the nodes are based on the PageRank algorithm,

which is a measure of a node’s influence in a graph. The colors
and the sizes of the nodes, from blue to red and small to large,
indicate the nodes’ relative PageRank values.

All of the seven student groups who completed the course were
analyzed further. The communication patterns for the groups in
the first course are presented in the Figure 2. An alphabet depicts
each group and a number each group member. For example D3
means member 3 in the group D. The different student groups
formed communication clusters, with certain groups having
stronger communication ties with each other. It can be seen that
the nodes D1, D3, A3 and C3 forms an especially important
communication center, relaying often information between the
nodes’ own group and two other groups. This correlates with the
observer’s observation that the D group was influential and
several other members visited the table, asking for programming
advice. The student D3 also visited his friends’ tables, relaying
information about recent solutions. The other noticeable pattern is
that one student is particularly active in communicating with other
groups and relaying the information to their own group, as in the
case of nodes F2 and B1. It can also be seen that some groups
overall form communication hubs, becoming central to the graph.
The groups A and D are influential in the classroom
communication social network, with the E and C group acting as
intermediaries for information.

Figure 2. Student group communication graph, first course 168

The participants were polled for use of other communication
resources, in addition to observing their classroom communication
patterns. The communication frequencies are presented in the
Table 1. The communication frequencies are collated to three
levels: Rarely, daily or several times per day. Similarly the course
success is divided to three tiers: Top third, the middle tier and last
third. It can be seen that some of the most influential groups
communicated a lot with the assistant and from observing the
classroom it could be seen that often the information given by the
assistant was spread to other students through physical
communications that followed the presented communication
network. All groups used online resources often in addition to
communicating with each other.

Table 1. Group communication frequencies, first course

Group Asked for
help from
the
assistants

Used
online
materials

Communicated
for ideas or
technical from
other groups

Course
success
tier

A Several
times per
day

Several
times per
day

Several times
per day

2nd best

B Daily Several
times per
day

Daily 2nd best

C Rarely,
once or
twice

Several
times per
day

Several times
per day

2nd best

D Several
times per
day

Several
times per
day

Several times
per day

1st

E Rarely,
once or
twice

Several
times per
day

Several times
per day

2nd best

F Rarely,
once or
twice

Daily Daily 2nd best

G Several
times per
day

Several
times per
day

Several times
per day

3rd best

The second course had five student groups, four of which were
selected for observation for a total of sixteen students. 24% of the
participating students had attended a Code Camp –style event
before this course. One student group was excluded because they
only partly attended the event. In the second course the
communication graph, presented in Figure 3, forms a circle
instead of a set of clusters. Two major groups, the groups A and
C, form a tight and influential cluster, which mostly connect to
two separate groups. Again the tight cluster correlates with tight
sociability: In the social event the groups got to know each other
better and the students A3, A2, C2 and C4 spent a good part of
discussing during the social event. However, when inspected from
the perspective of utility, the collaborations are not as effective as
they could be: The groups C and D both worked on the same
mobile platform and collaborated little, while the groups A and C
collaborated on completely different concepts and platform.
Similarly, the groups B and C worked on similar problems and
only some of the students collaborated. As in the previous course,

some groups, A and C in this case, form communication cluster
and in some groups there is a distinct person, like D1 or B4, who
communicates with this influential cluster.

Figure 3. Student group communication graph, second course

The students participating for the second course were also polled.
The communication frequencies for the second course are
presented in the Table 2. The course success was very similar for
all participating groups in this instance, with difficulties in finding
clear differences between groups. Unlike in a previous course, the
communication between groups was less frequent and one
influential group reported that they received ideas and technical
help from other groups less often. The other influential group C
repeated the pattern observed in the first course and
communicated often with the course assistant, sharing technical
help with the other groups. Of all the groups, the groups B and C
were physically closest to each other.

Table 2. Group communication frequencies, second course

Group Asked for
help from
the
assistants

Used
online
materials

Communicated
for ideas or
technical from
other groups

Course
success
tier

A Daily Several
times per
day

Rarely, once or
twice

2nd best

169

B Rarely,
once or
twice

Several
times per
day

Daily 3rd best

C Daily Several
times per
day

Daily 3rd best

D Rarely,
once or
twice

Several
times per
day

Rarely 1st

In addition to asking for numerical answers, the poll was
expanded with optional textual answers asking about most
important communication factors that helped the entire group to
progress. The answers included good communication amongst the
team, resourceful team members, meetings, online help and
resources, friendly working environment, advice and ideas from
other groups and sharing information. The most commonly
mentioned sentences were related to information sharing and
friendly working environment or team spirit.

The student groups participating in the second course were
interviewed as teams in addition to being polled. The most
comments involving collaboration mentioned it being allowed to
collaborate with other groups useful, but difficult to initiate.
Several students mentioned that collaboration was difficult to
initiate with more distant groups, because it was difficult to know
what they were currently working on. They said that another issue
was about knowing when to establish collaboration. Programming
is mostly a quiet activity and it was difficult to tell when the
person did not want to be disturbed. However, at the same time
several interviewees said that they could have welcomed more
requests for collaboration, but other people did not initiate them.

The third and the final studied course had fewer students, because
of its position at the end of the semester and had only three
student groups, all of which were selected for observation for a
total of seven students. 80% of the students in this course had
participated to Code Camp –style events before, with overlap
from the second observed course. The communication graph that
student collaboration communication forms is presented in the
Figure 4. Again in here it can be seen that the most influential
students form a tighter communication cluster, with one student
and one group at the edges. However, some students are more left
out from the tight core of communication, with only faint and
occasional instances of collaboration. It should be noted that the
students A2, B1 and B2 correspond to students A1, A2 and A3 in
the previous code camps. It is a pattern that can also be seen
repeating in other courses that are outside this study: Students
tend to network and tend to collaborate with each other, whether
formally in the same group or not.

Figure 4. Student group communication graph, third course

The communication frequencies for the third course are presented
in the Table 3. While the course had fewer participants than the
previous ones, the differences in success were more noticeable. It
can be seen from the observations that the most successful groups,
A and B, used online resources often in addition to
communicating with each other.

Table 3. Group communication frequencies, third course

Group Asked for
help from
the
assistants

Used
online
materials

Communicated
for ideas or
technical from
other groups

Course
success
tier

A Rarely,
once or
twice

Several
times per
day

Daily 2nd best

B Daily Several
times per
day

Daily 1st

C Daily Daily Rarely, once or
twice

3rd best

The textual part of the poll asked about most important
communication factors that helped the entire group to progress.
Student replies included team spirit, other people, shared
ambition, working cooperation, version control software and
online resources. Cooperation in work and team spirit were
mentioned most often.
Like in the second course, students participating in the third
course were team interviewed. The interview results were similar
as well: The major difficulties to communication according to
team interviews were the diversity of topics and the difficulty in
establishing contact to people the students did not know
beforehand.

Finally, the usage of communication resources was observed and
polled in all three courses in aggregate. As presented in the Table
4, the overall usage of all communication resources in all of the
courses was high. Most of the resources were in usage daily or
more often, except for group-to-group communication in the
second course. A possible explanation for this was the diversity of
allowed topics, so that the groups had less to contribute to each
other.

Table 4. Aggregate communication frequencies

Course Asked for help
from the
assistant daily
or more often

Used online
materials
daily or more
often

Communicated
with other
groups daily or
more often

1st 61% 100% 67%

2nd 50% 100% 33%

3rd 71% 100% 71%

170

3.4 Analyzing the Communication Patterns
From the different communication patterns it can be seen that the
students collaborated a good amount, both within the groups and
to a certain extent between the groups. There were repeating
patterns discovered in the student communications. First
observation is that students willingly collaborate between groups
despite a wealth of available online resources and a slightly
competitive atmosphere being present in the classroom. When
interviewed and observed in the classroom and the social events,
it was revealed that often the first or strongest collaboration
occurs between people who know each other from previous social
contexts. This collaboration can expand when more people see
this center of activity and join in. The second most common
provided reason for initiating communications was pre-established
knowledge that the person might have useful information or be
able to help with a problem.

The use of online resources, collaboration networks and
communication frequencies between the groups differed between
the three courses. The nodes in the first collaboration graph
formed loosely connected clusters, while in the second course the
pattern was a rough circle, with less interconnectedness but
stronger collaboration in a single cluster. The probable reason for
this is the difference in the task assignment: In the first course all
the groups were assigned a similar task on a same platform and in
the second course the groups were allowed to pick their own
implementation, platform and topic within a specific theme. The
same reason can explain higher communication frequency
between groups in the first course. Lastly, in the third course there
was a tight cluster of collaboration that was as strong as the
collaboration inside of one of the groups. In interviews the
provided reason for this collaboration was existing friendships
between many of the collaborators from different groups. It
appears that a certain minimum amount of groups is required in
order to have varied collaboration between groups. One possible
pattern that did not occur in the study is one in which two strong
competing centers of cooperation form, with the groups
essentially split in two separate blocs.

In all of these courses one or two core groups of collaborators
were discovered. In the first course they were groups A and D, in
the second course groups A and C and in the third course groups
A and B. These groups are characterized by a certain enthusiasm,
willingness to communicate and were well graded and placed well
at the competition that was held at the end of the courses. The
groups that communicated often with each other also used other
communication resources, like online materials both on the course
pages and other web materials. Other groups benefited from
interactions with them, since the groups’ willingness to
communicate extended to sharing information they had
discovered. However, not all groups were equally connected to
these strong centers of collaboration and did not equally benefit
from it.

4. DISCUSSION ON CLASSROOM
COLLABORATION COMMUNICATION
PATTERNS
Our study showed that overall the communication patterns appear
to follow pre-existing, physical social networks that were
established outside the context of the course. The question is
whether this is an optimal case and whether the classroom or
online environments can be changed to encourage forming new,
beneficial social connections. One of the major issues that were

mentioned in the team interviews was the difficulty of knowing
whether it is appropriate or beneficial to establish
communications. This is the major reason that inter-group
collaboration follows pre-existing social connections, because the
barrier to establish communication is less difficult. Informal
communication channels between friends also provide more
information about group project work status, which makes it
easier to initiate collaboration.

The analysis was performed using three different approaches,
which are video and direct observation, interviews and polls.
Results from the different sources were used to complement each
other. For example, direct observation and interviews provided
context data while the video observation covered the event
completely from start to finish for most accurate graphing data.
Student participation in the data gathering was high, with every
observed group participating in the interviews in the last two
courses and 95% of the students completing the online surveys.
With the high percentage of data collection and accurate
observation records from the entire duration of the events it can be
said that the structure of the graphs are an accurate abstraction of
what occurs in the classroom. The study would have been more
conclusive if it had included more courses in a wider range of
universities. However, the studied communication channels in the
three observed courses already provided notable patterns of
communications for analysis. Also, some of the patterns repeated
during each of the courses, suggesting towards them being
common patterns to Code Camp –style courses in environments
that are similar to the study environment.

The main pattern that repeated in all of the courses was a strong
center of collaboration that formed around one to three groups.
The fact of strong center of collaboration was contrasted with the
interview reports of difficulties in matchmaking when looking
outside one’s group. This suggests that not all groups find or are
not able to work with the strong center of collaboration and that
collaboration does not equally benefit all participating groups.

We propose that the discovered issues can be addressed by
offering computer supported collaborative tools that support wide
student-initiated collaboration. A common issue during the
courses was that the students did not realize that they had similar
problems, which caused hesitation in initiating communication.
Software tools can be used to publicize commonly encountered
problems and to find people who are struggling with the same
problems for collaboration. Tools like these could help students
find each other without spending time on discovering partners and
accidentally disturbing people who are concentrating on
individual problem solving. An additional benefit would be that
the problem and the following conversation would be recorded for
other participants to view later in the course if they struggle with a
similar problem. For example question and answer sites with
reward systems have seen wide use in the field and could be also
applied inside classroom. Additional tools, like projectors or
mobile clients, could be used to publish unanswered questions and
the most useful solutions.
Traditional online courseware tools are now commonly seeing use
in classroom environments, but their usage focus is often to
provide course literature, assignments and accept returns. While
they do allow things like peer review of assignments, this style of
collaboration is teacher controlled and usually more slowly paced.
This study shows that the patterns of collaboration in the Code
Camp style of courses could be improved and that additional tools
should be provided to encourage student-initiated collaboration.
Improved software tools could give more opportunities for

171

collaboration within classrooms by easing sharing, providing
matchmaking services and should be investigated in future
research. There are several examples of web-based collaborative
tools widely used in the industry. One is Github, which enables
direct collaboration between several people by allowing several
people to edit and version software source code concurrently.
Another is Stack Overflow, which facilitates problem solving by
allowing people to post questions and rate and reward the best
answers with reputation points.

Computer-based communication tools do require the presence of
computers in the learning environments and this could a drawback
in adopting the tools. However, in software engineering courses
computers are already present as development tools and using
computer-based collaboration tools will most likely have a lower
barrier for adoption than in other fields of education. Also,
software engineering students are already familiar with using
online tools for working. There is a possibility that their current
development or planning tools do not have to be replaced, just
extended. There are plugins or workflows that support
collaboration and collaborative learning both within and between
groups and these tools can be introduced into the course workflow
and be pre-installed into the working environments.

5. CONCLUSION
In this study we applied social network analysis to intensive
collaborative software engineering courses using recordings, polls
and interviews as source material. We presented and analyzed the
communication collaboration patterns that form during intensive
collaborative software engineering courses. It was found out that
the students do collaborate outside their groups on problems, but
the patterns of collaboration follow pre-established social
connections and not all groups equally benefit from the
collaboration. The main method of collaboration was seeking out
these social connections, like well-known classmates or friends
and discussing with them, whether they were working on the same
problem or not. The main result of this study is discovering the
form of communication patterns that are established during the
courses. These patterns and discovered issues in matchmaking can
provide the basis for designing CSCL tools to improve
collaboration. Additionally the results can be used to validate and
compare improvements to communication patterns when applying
social network analysis to future courses that use CSCL tools.

While students mostly collaborate along pre-existing social
connections, almost all of the groups in the observed courses used
a major amount of online resources and used computers for
planning from the start. Our proposed solution for improving
collaboration in these already computer-supported work processes
is introducing of online collaboration tools and groupware
solutions to that are already well established elsewhere in the
industry, instead of the more often used classroom online tools.
These online collaborative tools, such as Stack Overflow or
Github, can fit the fluid nature of the event better. The classroom
tools are often aimed for delivering preplanned course material
according to a curriculum.

During the courses students mainly communicated face to face,
but because of privacy and monitoring issues there was no
possibility to gain detailed information about the students’
electronic communications. However, in further social network
analysis research where a centralized CSCL tool is designed and
used for comparison, these limitations can be overcome by
collecting statistics from the collaborative tools.

6. REFERENCES
[1] Abraham, A. and Hassanien, A.E. Computational Social
Network Analysis: Trends, Tools and Research Advances.
Springer, 2010.

[2] Alaoutinen, S. et al. Experiences of learning styles in an
intensive collaborative course. International Journal of
Technology and Design Education. 22, 1 (2012), 25–49.

[3] Baker, M. et al. Integrating computer-supported
collaborative learning into the classroom: the anatomy of a failure.
Journal of Computer Assisted Learning. 28, 2 (2012), 161–176.

[4] Bastian, M. et al. Gephi: An open source software for
exploring and manipulating networks. International AAAI
conference on weblogs and social media (2009).

[5] Bravo, C. et al. Integrating educational tools for
collaborative Computer Programming learning. Journal of
Universal Computer Science. 11, 9 (2005), 1505–1517.

[6] Bruns, A. Produsage. Proceedings of the 6th ACM
SIGCHI conference on Creativity & cognition (New York,
NY, USA, 2007), 99–106.

[7] Chen, W. et al. What do students do in a F2F CSCL
classroom? The optimization of multiple communications modes.
Computers & Education. 55, 3 (Nov. 2010), 1159–1170.

[8] Davies, W.M. Intensive teaching formats: A review.
Issues in Educational Research. 16, 1 (2006), 1–20.

[9] Duque, R. and Bravo, C. Analyzing Work Productivity
and Program Quality in Collaborative Programming. The Third
International Conference on Software Engineering Advances,
2008. ICSEA ’08 (2008), 270–276.

[10] Force-Atlas Graph Layout Algorithm: URL
http://www.medialab.sciences-
po.fr/publications/Jacomy_Heymann_Venturini-Force_Atlas2.pdf
(2012). Accessed 12 June 2013.

[11] Gillies, R.M. Teachers’ and students’ verbal behaviours
during cooperative and small-group learning. British Journal of
Educational Psychology. 76, 2 (2006), 271–287.

[12] Java, A. et al. Modeling the spread of influence on the
blogosphere. Proceedings of the 15th international world wide
web conference (2006), 22–26.

[13] Johnson, D.W. and Johnson, R.T. Learning Together
and Alone: Overview and Meta‐analysis. Asia Pacific Journal of
Education. 22, 1 (2002), 95–105.

[14] Knoke, D. et al. Social network analysis. Sage
Publications, second edition, 2007.

[15] Kwak, H. et al. What is Twitter, a social network or a
news media? Proceedings of the 19th international conference on
World wide web (New York, NY, USA, 2010), 591–600.

 [16] Laat, M. de et al. Investigating patterns of interaction in
networked learning and computer-supported collaborative
learning: A role for Social Network Analysis. International
Journal of Computer-Supported Collaborative Learning. 2, 1
(Mar. 2007), 87–103.

 [17] Lan, Y.-F. and Jiang, Y.-C. Using Instant Messaging
and Annotation Services to Improve Undergraduate Programming
Courses in Web-Based Collaborative Learning. Fifth
International Joint Conference on INC, IMS and IDC, 2009. NCM
’09 (2009), 236–241.

172

[18] Martínez, A. et al. Studying participation networks in
collaboration using mixed methods. International Journal of
Computer-Supported Collaborative Learning. 1, 3 (Sep. 2006),
383–408.

[19] McDowell, C. et al. The effects of pair-programming on
performance in an introductory programming course. SIGCSE
Bull. 34, 1 (Feb. 2002), 38–42.

[20] Minocha, S. and Thomas, P.G. Collaborative Learning
in a Wiki Environment: Experiences from a software engineering
course. New Review of Hypermedia and Multimedia. 13, 2 (Dec.
2007), 187–209.
[21] Okamoto, T. Collaborative technology and new e-
pedagogy. IEEE International Conference on Advanced Learning
Technologies, 2004. Proceedings (Sep. 2004), 1046 – 1047.
[22] Otte, E. and Rousseau, R. Social network analysis: a
powerful strategy, also for the information sciences. Journal of
Information Science. 28, 6 (Dec. 2002), 441–453.
[23] Page, L. et al. The PageRank citation ranking: bringing
order to the web. 1999.
[24] Pais Marden, M. and Herrington, J. Supporting
interaction and collaboration in the language classroom through
computer mediated communication. World Conference on
Educational Multimedia, Hypermedia and Telecommunications
(2011), 1161-1168.

[25] Porras, J. et al. Better programming skills through Code
Camp approach. 16th EAEEIE Annual Conference on Innovation
in Education for Electrical and Information Engineering,
Lappeenranta (2005), 6–8.

[26] Porras, J. et al. Code camp: a setting for collaborative
learning of programming. Adv. Technol. Learn. 4, 1 (Jan. 2007),
43–52.

[27] Reffay, C. and Chanier, T. Social Network Analysis
used for modelling collaboration in distance learning groups.
Intelligent Tutoring Systems (2002), 31–40.

[28] Scott, J. Social network analysis. SAGE Publications,
third edition, 2012.

[29] Weng, J. et al. TwitterRank: finding topic-sensitive
influential twitterers. Proceedings of the third ACM international
conference on Web search and data mining (New York, NY,
USA, 2010), 261–270.

173

Pedagogy of 1:1 Computing in Colombia:
A Case Study of Three Rural Schools

David Silva
Stockholm University, DSV

Department of Computer and
Systems Sciences

Forum 100, 16440, Kista,
Sweden

maildavidsilva@gmail.com

Matti Tedre
Stockholm University, DSV

Department of Computer and
Systems Sciences

Forum 100, 16440, Kista,
Sweden

first.last@acm.org

Mikko Apiola
University of Helsinki

Department of Computer
Science

P.O. Box 33, University of
Helsinki, Finland

mikko.apiola@helsinki.fi

ABSTRACT
The utilization of one-to-one computing (each students is
equipped with a personal device) has slowly started to be-
come available into educational contexts in developing coun-
tries. One crucial challenge in relation to the understand-
ing and developing of one-to-one computing related learning
and teaching practices in developing educational contexts
is the lack of context-situated educational research on the
topic. This study participated in addressing the lacks in
educational research by exploring the pedagogical strategies
utilized in three rural schools in Colombia. The results con-
sist of rich descriptions of teachers’ pedagogical approaches.
The results show high empowerment in teachers’ efforts in
developing and contextualizing one-to-one related pedagog-
ical approaches into their teaching. Many of the teachers’
approaches were found to be well aligned with a number of
constructivist and student-centered pedagogical approaches.
This study adds important new educational results to the
ongoing scientific discussion about education with one-to-
one computing

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Computer-assisted
instruction (CAI), Collaborative learning

General Terms
Experimentation, Human Factors

Keywords
1:1 computing, ICT4D, TEL, OLPC, Escuela Nueva, Peda-
gogy

Acknowledgments
This paper is based on the M.Sc. thesis “Exploring educa-
tional and pedagogical strategies of one-to-one computing in

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
Koli Calling ’13, November 14–17 2013, Koli, Finland
ACM 978-1-4503-2482-3/13/11.
http://dx.doi.org/10.1145/2526968.2526988

Colombia: A case study of three rural schools in Colombia,”
Stockholm University, Department of Computer and Sys-
tems Sciences (DSV), by David Silva.

1. INTRODUCTION
The use of information and communication technology

(ICT) in the classroom has recently become an everyday
practice, especially in the developed world. One approach
to utilizing ICT in education is one-to-one computing (each
student is equipped with a personal laptop). One-to-one
computing has become common in many developed coun-
tries, and has recently been increasingly advocated for many
developing countries, too [18, 27]. However, fruitfully em-
bedding one-to-one computing in the classroom has not al-
ways been straightforward—neither in a developed country
context nor in a developing country context [36].

One crucial challenge of one-to-one computing in learn-
ing environments in developing contexts is the paucity of
context-situated educational research on the topic. Educa-
tion is known to be very context-dependent [38]. Although
there are case studies and technical studies on educational
technology in various developing countries, the learning and
teaching side is often left with less attention—which is a
common line of critique in both developing and developed
country contexts [8, 22, 34, 37]. There exists a low num-
ber of research studies, in developing country contexts, on
the pedagogical strategies that successful educators apply
in their one-to-one projects. Thus, there is a serious lack in
basic as well as applied education research, which both are
needed to better understand different educational contexts
and to develop the 1:1 related learning and teaching praxis
(cf., [21]).

This research study addressed that gap in knowledge by
exploring, in three rural schools in Colombia, the pedagogi-
cal strategies adopted by experienced teachers who utilize
one-to-one computing as a learning tool in their regular
classroom teaching. That exploratory aim was approached
through two concrete objectives: 1) to identify teachers’ ped-
agogical approaches, and 2) to understand the reasons for
teachers’ choices of those pedagogical approaches. The re-
search questions for this study were:

• RQ1 : What pedagogical approaches do teachers use
with 1:1 computing in three rural schools in Colombia?

• RQ2 : What are the teachers’ reasons for adopting
those pedagogical approaches?

174

2. RELATED RESEARCH

One-to-one Computing and Pedagogy
One-to-one computing refers to the idea of equipping each
student with a personal computer. The idea of technology
enhanced education dates back to the beginning of mod-
ern computing and has been actively used in school projects
since the 1960s. The research project ACOT, Apple Class-
rooms Of Tomorrow, was one of the first attempts to re-
search and propose teaching strategies with computers in
education [1]. Microsoft in turn, implemented a laptop pro-
gram, the Anytime Anywhere program, in the United States.

There is quite some research on one-to-one computing in
industrialized countries, and that research branch is still
growing [28]. Inan and Lowther [19] studied 1:1 computing
in 195 schools in Michigan, U.S. The results showed some
changes in learning paradigms. Another study, conducted
in the UK, identified two common use patterns for ICT in
the classroom: supporting learning of the topic, and using
the computer as a tool for presenting student work [6]. Yet
another study, from Sweden, indicated that teachers’ will-
ingness to utilize laptops depended on the way they plan
their teaching [29]. A number of 1:1 related success factors
have been identified [2], [14, pp.21–22].

The One Laptop Per Child (OLPC) Foundation was es-
tablished in 2005 and it used to be best known for the ‘$100
laptop project’. OLPC Foundation is a non-profit organiza-
tion with the aim of providing laptops to pupils in every part
of the world [34]. The organization focuses specifically on
providing computers to students from disadvantaged socio-
economic backgrounds [12]. The notable technical character-
istics of the XO laptops include their screens’ readability in
sunlight, robust construction, low power consumption, use
of mesh networks for Internet access, and low production
price [13].

The OLPC foundation’s pedagogical position is heavily in-
fluenced by the views of the South African-born computing
and education pioneer Seymour Papert, who stresses learn-
ing by exploring, independent thinking, and through playin
(e.g., [18]). One-to-one initiatives are often paired with a dis-
course of other educational reforms, which advocate student-
centered, project-based, problem-based, collaborative, and
creative learning [36].

Those views of learning follow a long tradition in edu-
cation. After the decades-long paradigm shift in learning
from behaviorism to constructivism, a number of student-
centered pedagogical approaches have emerged. Among those
pedagogical approaches are Problem Based Learning (PBL),
Project Based Learning, and Progressive Inquiry (e.g., [4,
15, 17, 20]). All those three pedagogical approaches follow
the constructivist views of learning. They advocate the use
of realistic, open-ended projects as learning tasks, and they
see the teacher’s role updated: the teacher’s role is to act as
a coach and a facilitator of the learning process in contrast
to giving direct instruction as in behavioristic learning.

“Escuela Nueva” Model of Colombia
In the past few decades, Colombia has aimed at reforming
its rural primary school pedagogy [23]. The reform is named
Escuela Nueva (“new school”), and it has been adopted in
Colombia as well as in other Latin American countries [5]).
The reform has received positive evaluations [32].

One evaluator of the Escuela Nueva reform listed four es-

Table 1: Case Studies in Developing Countries on
One-to-One Pedagogy

Pedagogical Focus Location Sources
Self-determination theory, con-
structivism

Tanzania [3]

Storytelling, student-centered
learning

Tanzania [10]

Project-oriented, self-determined
learning

Ethiopia [16]

Formal and informal learning Sri Lanka [24, 25]
Analysing the conversion from
traditional teaching to one-to-one
using activity theory

Ethiopia [18]

sential characteristics of the reform [23]. First, all teach-
ers undertake adequate preparation to lead a multi-grade
classroom, to utilize new learning materials, and to support
both individual and co-operative learning. Second, instruc-
tional materials, textbooks, and teacher guides are provided
to schools to support self-guided learning. The students’
textbooks are designed to further support self-directed learn-
ing at their own pace, without sustained teacher supervision.
Third, teachers are given the chance to share knowledge with
colleagues from other schools. Fourth, it is stressed that stu-
dents must have an active role in the learning process, where
they work both independently and in small groups, and us-
ing creativity to achieve their learning goals.

The learning activities in the Escuela Nueva pedagogy
often take the form of context-based projects, relating to
the rural and agricultural surroundings including indoor and
outdoor activities [23]. Students are also encouraged to be
involved in politics and school management. One of the goals
of the project is also improvement of reading and writing
skills, and to have a close relationship with the surrounding
community [33].

Case Studies in Developing Countries
There are a variety of case studies on one-to-one computing
in developing countries, described in recent research litera-
ture. A number of those case studies also discuss pedagogical
issues: Table 1 lists the pedagogical elements and countries
of those studies.

The first case study in Table 1, conducted in Tanzania,
was performed through a workshop approach, where sev-
enth grade students studied general health care topics [3].
The researchers developed the workshop to have a context-
conscious approach, together with a combination of modern
educational and pedagogical theories such as intrinsic mo-
tivation, constructionism, constructivism, and explorative
learning. The workshop started with 32 lessons of ICT in-
troduction and self-exploration, after which the teachers de-
signed the lessons to increase in difficulty and self-directed
learning. Constructivism was further approached by group
problem solving, role-playing, dialogic teaching, and by use
of experimental learning principles. The study showed pos-
itive educational results and increased student motivation.
Instead of presenting a general pedagogical method the study
proposed various best practices with the XO laptop in edu-
cation.

Of the studies in Table 1, another especially relevant study
was done on the traditional pedagogy of Ethiopia [18]. The

175

study used Engeström’s extended model of activity systems
[11] to study the shift from traditional Ethiopian classroom
education to a one-to-one learning mode. The initiative used
XO laptops together with a special software package, the
Melepo software, which was designed to“...transmit digitized
Ethiopian school books in an interactive one-to-one format”
[18]. The study proposed that in order to fundamentally
change the education to a constructivist one-to-one model, it
is essential to consider the situational context, such as social
and cultural elements [18]. The Melepo software succeeded
to circumvent some of those issues, and it was argued that
it would be beneficial to further emphasize working with
the tool [16]. The authors also clarified that the current
textbooks are not adequate to help teachers and students
take advantage of one-to-one computing education [18].

A more recent study of six rural schools in Sri Lanka,
where XO’s were used, found that local language content
could shift the pedagogy towards student-centered approach
if more local-language content is developed [24]. The ini-
tiative was challenged due to many computer breakdowns,
which forced the teachers to re-organize their teaching so
that students shared computers. Teachers pointed out, that
a well functioning internet connection is very important in
order to be able to utilize learning materials over the inter-
net.

3. METHODOLOGY
The aim of this study, exploration of actual teaching ap-

proaches, required rich and detailed information on a limited
number of cases. The methodology literature recommends
case studies as one effective approach for that type of re-
search [7]. The cases were three schools in rural Colombia.
As the objectives required in-depth information on teachers’
approaches and the reasons behind them, semi-structured
interviews and classroom observation were selected as meth-
ods for data collection. The method choice was similar to
the method choice in related studies [3, 10, 24, 18].

Data Collection.
The data collection was performed between February and

March, 2013. This study utilized qualitative data collection
and analysis methods following Creswell’s and Denscombe’s
guidelines for qualitative research [7, 9]. Semi-structured
interviews were conducted in group and individual modes,
and observations of two classrooms were done in the form of
researcher as a silent observer, which as a method of obser-
vation is not highly obtrusive. A total of ten teachers par-
ticipated in this study, out of which nine were interviewed
and two were observed during one day each while teaching
using XO and Classmate laptops.

Subjects.
The participants in this study worked as teachers either

in the primary or secondary level, where they integrated
1:1 computing in their teaching of primary education, infor-
matics education, biology education, and agricultural educa-
tion. The teachers were selected through chain-referral sam-
pling, which is appropriate for the exploratory nature of this
study. The initial sample started by contacting the OLPC
Foundation, which provided contact information to OLPC-
equipped schools. The first and following schools were con-
tacted through e-mail and phone, which resulted in meetings

with the school principals who, through their coordinators,
selected teachers that taught with the laptops.

Research Materials.
Audio recordings of the interviews were recorded using a

mobile sound recorder. Field notes were taken throughout
the research period, and they were supplemented with pho-
tos of the classrooms and schools. The digital analysis tool
Dedoose was used for data analysis.

Data Analysis.
Translation of the material was done by the authors. For

analysis, the study followed Creswell’s data analysis spiral
[7] as a generic guideline for stages of qualitative analysis
[31]. The analysis deviated from Creswell’s spiral at the ‘ac-
count’ level of the spiral. At that stage the results of each
case were instead analyzed for their correlation with find-
ings of related studies and through triangulation of findings
between interviews and observations.

Research Ethics.
Informed consent was taken from each of the participants,

and all participants were kept anonymous through the use of
pseudonyms. Although this study is limited to the teachers,
students, who were minors, were indirectly involved. Hence,
special care was taken to conceal any and all information
about students to protect their anonymity.

4. RESULTS
This study investigated teachers’ pedagogical approaches

in three schools: Fundación Formemos, Santa Maŕıa del Rio,
and Normal Santa Teresita. The schools are located in ru-
ral areas near Bogotá, the capital city of Colombia. The
students in the three schools use either XO laptops (OLPC
Foundation’s ‘hundred dollar laptop’) or Intel’s Classmate
laptops in their classrooms as part of their education.

Santa María del Rio
Santa Maŕıa del Rio school is a public school, which has
pupils from primary up to high school levels. Santa Maŕıa
del Rio is located in the rural area of Ch́ıa, one hour drive
from capital Bogotá. Pupils of Santa Maŕıa del Rio come
mostly from low-income homes, although the school is sur-
rounded by exclusive rural high schools. The school received
215 XO-1 laptops and an unknown amount of Classmate
computers in 2009, but due to the lack of sustainability of
the initiative, in 2013 the school only had 40 working com-
puters left.

Fundación Formemos
Fundación Formemos is located in the rural highlands of
the municipality Tena. The school has a strong focus on
teaching sustainable agriculture and providing children of
internal refugees with education possibilities. It is both a
boarding school and a day school with around 200 students.
The school is state-funded, and the ages of students are be-
tween children of six years and young adults of 16–19 years.
An estimated number of 117 XO-1 laptops were given to the
school in 2009 (the exact number was not known). Currently
the one-to-one initiative lacks continuity and the school has
to deal with many technical problems.

176

Normal Santa Teresita
The school Normal de Santa Teresita is surrounded by the
rural highlands of the municipality Quetame near the de-
partment Meta. The school is located in the center of the
small town Puente Quetame, which is currently being re-
built due to earthquakes. Normal de Santa Teresita is a
fairly small school with 200 students. The school provides
education to children in all ages up to high school, and also
offers basic teacher education. The school was given 250
XO-1 laptops in 2009. Like the other schools, because of the
lack of sustainability and technical support of the project,
the school currently only has 26 working XO laptops.

4.1 Results - Santa María del Rio
The school’s classrooms were well lit, and the walls deco-

rated with student function maps such as classroom repre-
sentatives, curriculum maps, and upcoming student respon-
sibilities of, for instance, classroom maintenance. The fifth
grade teacher sat between the children and the classroom
whiteboard with a small bookshelf of educational material
to the side of her desk.

Students shared the XO-1 computers in groups of three
and sat in groups close to the walls because that was where
the power sockets in the room were located. The school pre-
viously used the school’s computer labs to study informatics,
but since receiving 215 XO laptops in 2008, the school has
used the laptops in all areas of the curriculum. The school
does not always have a functioning wireless connection, and
the connection was out of order during this study, too.

The school pedagogy encouraged a project-based approach,
in which teachers bring forward a theme to students, from
which students can develop projects. Students could freely
choose a project based on the proposed theme and their
own interests. One of the teachers explained this further:
“Depending on whether the student’s proposal is within the
theme, they can openly choose within range of sub-themes
that are related to the knowledge that they will study.” The
purpose behind the freedom of choice of the project was to
encourage the students’ creativity.

The next step was to develop the students’ project pro-
posals to be in accordance to the related subjects. This
was done together with the teacher and also in cooperation
with teachers from different subjects. One teacher explained
that the collaboration between teachers focused on integrat-
ing parts of curriculum subjects into the students’ projects
so that educational goals and state official education stan-
dards were fulfilled. Another teacher continued to state that
the outcome of this step was to build a conceptual model of
the proposed project.

The next step in the teachers’ pedagogy was to aid the
students to gather information around their topics, using
the computers, so that the students could construct their
project. One teacher said, “...students are instructed to build
something out of the information [. . .] we call this step con-
struction.” That teacher also helped students with their con-
structions in case they were having problems using the com-
puters. Student could choose any method of construction
whether using physical models, digital models, or setting up
a theatrical play.

The teachers tried to ensure student activity by reviewing
the student’s progress often and by having active commu-
nication with them. Moreover, one teacher noted that the
children controlled each other’s activeness as they worked in

groups. The students presented their digital projects to the
teachers with slide shows using presentation software they
learned in informatics education. Regarding evaluation, the
school employed two different approaches: one where the
teachers evaluated their strategies, and one where students
evaluated their acquired knowledge and their used tools.
Books were not an essential source of information to con-
struct the student projects, instead they were used simulta-
neously with other material. Students had few compulsory
school books as the school was state-funded for children of
low-income families. Yet, whenever the school’s Internet
connection was down, school books were used more. In these
cases, the teachers provided the students with digital school
literature from their personal digital library. One of the
teachers explained his material management approach:

I have a library with material about my subject,
which I store on a memory card [. . .] The ma-
terial includes whatever I need to include on the
current subject. Afterwards, I distribute the ma-
terial on to each of the students’ computers, but
obviously I do not do their entire work, I only
give them enough material so they can develop
their own work.

The pedagogy has resulted in many student projects re-
lated to Ch́ıa, which is the municipality where the school
is located. One of the teachers, for instance, noted that
“we have seen many student projects related to Ch́ıa’s his-
tory”. Another gave an example of a project about tourist
locations in Ch́ıa: “This year, students from eleventh and
twelfth grade are working on a Wikipedia project, to inform
about tourist locations in Ch́ıa. . . ” The teacher continued
to explain the construction of the Wikipedia page: “. . . each
week a group of students makes story cards about a location
and also updates the Wikipedia page, creating a history of
posts.”

Children in the lower grades used the XO laptop’s games
to learn basic mathematics. One teacher explained a strat-
egy to teach dimensions and geography with the XO laptop:
“The subject of the continents was explained by discussing
that we are on a continent within a continent, that our con-
tinent belongs to America. They looked in the maps in the
computer and talked about geographic dimensions. The dig-
ital maps allowed them to describing all those things.” The
same teacher continued to explain a recent digital project of
airplanes types: “. . . the students made models of airplanes;
they also made a helicopter with a motor and presented it
with lots of slides. [The informatics teacher] taught them
another program to work with slides.”

During the classroom observation, it was noticed that the
majority of students had problems with the batteries and
chargers of the computers. The teacher used much of her
time helping students with the technical problems. The
teacher also had to mediate student brawls over taking shifts
with chargers in order to get a working power socket. More-
over, there were disagreements over whose turn it was to
use the computer within the group—the education was not
one student per one computer, as originally planned. Mean-
while, the teacher was receiving student reports over their
progress. At one occasion, one student from a group that
had difficulties finding a functioning power source got up
from his chair and sneaked to a power socket that was used
by another group. Once there, he changed the charger to his

177

own on the sly. The group that had used the power source
soon noticed what had happened when their laptop signaled
low battery, whereupon the saboteur was quickly traced. A
loud argument between the groups followed in which they
blamed each other of sabotage, as well as of not sharing the
power source. Similar scenarios occurred several times, es-
pecially during the first hour when the students were setting
up the laptops.

4.2 Results - Fundación Formemos
Fundación Formemos has a strong focus on environmental

and sustainable education. The school had adapted their
pedagogy around the Escuela Nueva model. One of the
teachers explained the schools pedagogical approach:

Well, here we work with the Escuela Nueva peda-
gogical model, which allows working in groups for
collaborative work through guides, starting from
the pre-concepts and ideas of the student. We
start from there and then go to the teacher’s the-
oretical explanation, and we leave out some ques-
tions from those explications and we work on un-
derstanding the questions through practice. It is
in this practice that the XO laptops are used and
integrated.

The students worked in self-regulating groups of six where
they rotated between different roles and responsibilities such
as leader, time keeper, and evaluator. The classroom walls
were used for information about classroom responsibilities,
maps of current projects, and information about impor-
tant upcoming events. Each classroom had one teacher and
around twenty students. The classrooms included a small
library with educational sources and reference books such
as dictionaries.

The teachers built the courses and a sort of guides for stu-
dents in accordance with the national educational goals. The
activities were contextually formed; one teacher explained,
“The Escuela Nueva pedagogy gives students the opportunity
to work with his reality and the location where they are ac-
tive.” He continued that in addition to creating the guides
the teachers also searched the Internet for tutorials of activ-
ities that were suitable for their theme as very little training
was given to the teachers on suitable activates to use the lap-
tops. Another approach to create guides was to use models
from the learning resource center that the Ministry of Edu-
cation provides, which teachers found easy to combine with
the laptops.

One of the teachers explained that students were not obli-
gated to use the computer to complete assignments or projects:
the methods depended on the theme. There again, speaking
to the other teachers made it clear that the laptops were
used in all areas, mostly in the lower grades. In those
grades, teachers instructed their students to use the pre-
installed software for drills and for practicing basic math-
ematics. Another teacher said that although students did
independent group work, teachers instructed the children to
stick to subjects-specific applications, such as mathematics
applications when they are studying mathematics.

One teacher showed how he used the measurement func-
tion in the XO laptops in his agricultural classes, as his
group of students studied the percentage growth of plants.
Another approach was to take a series of photographs and
videos to study the growth of plants. In addition, in that

teacher’s class the laptop cameras were also used to take
pictures of unknown plants and insects that were later stud-
ied in Wikipedia. In larger projects, the teachers planned
student work in cooperation with the ecology, pastoral, and
education ministries because of the schools’ focus on envi-
ronmental agriculture. The teacher described that students
completed these types of projects by presenting, in an annual
workshop, photos and videos of them doing their fieldwork.

One of the interviewed teachers was newly hired, and still
learning how to integrate laptops with education. She ex-
plained that she built each of her guides for students’ self-
directed studies in a form that allowed her to give a theoret-
ical talk about that theme. Afterwards, students could start
using the guide to find more information about the topic us-
ing the laptops. Another teacher explained a different way
of using the computer when she taught the anatomy of the
human body to her primary level students:

. . . pictures of the human body are downloaded
first from the Wikipedia. The details of the body
pictures depends on the students’ ages, so with
the younger student we only study the trunk, head,
arms, and legs while with older students studies
we add ears, nose, and mouth, while the eldest
study organs and senses like touch, smell, and
sight. . .

That teacher concluded by explaining that the childrens’
task was to add parts to the body using the paint software
on the laptops.

4.3 Results - Normal Santa Teresita
As the teacher responsible for laptops explained his/her

work at the school, it became clear that the institution had
severe difficulties integrating the laptops to education. The
reasons were mostly due to numerous technical problems
with the computers: problems with chargers, batteries, and
broken screens and keyboards had resulted in a low num-
ber of available computers. The technical difficulties were
even more evident during a one-day classroom observation
as most of the children’s computers were in very bad shape.
A noticeable number of students sat alongside the classroom
walls, to have access to the power sockets and the majority
of students had technical problems with the computers.

Despite the technical issues all of the school’s primary
teachers worked with the laptops in every classroom, as it fits
the schools integral pedagogy. One of the teachers explained
the school’s pedagogy by describing a current project:

We do not work with specific subjects. We follow
an approach called integrating knowledge, so what
we do is design a bi-semester project. I am, for
instance, working on a project called ‘Justin is a
chicken and Mary is a hen’ where I include all
the content of the first quarter, without having
to talk about: ‘this part is mathematics. . . , this
part is civics. . . , or this part is humanities. . . ’
No, what we do is we integrate. In this way,
Justin and Mary project is a pretext to erase all
curriculum subjects.

The children usually worked in a group of six as they per-
formed collaborative work but could be allowed to work in-
dividually depending on the current task. However, the lack

178

of working computers forced students to share computers
and work in groups. The classroom that was observed had
walls colorfully decorated with information and models from
the students’ current project. The classroom was equipped
with a whiteboard, a desktop computer, and an electronic
whiteboard. During the classroom observation one assign-
ment for students was to draw Justin the chicken, and write
a story of how and what the students had learned in a previ-
ous lesson. Several children proudly showed their drawings
and stories on the computer.

The teachers created the project ideas and received sup-
port from the rest of the primary education staff to include
important educational parts. However, as the project ad-
vanced, students could engage in developing the project fur-
ther. The teachers started their lessons by writing a prob-
lem on the whiteboard. In the case of the example teacher
above, the problem was related to her current Justin and
Mary project. One of the example problems she used to con-
nect the computer to projects in her class was to investigate
the cost of maintaining the chicken. By this approach, the
teacher instructed her students to approximate the costs us-
ing a spreadsheet program. The teacher explained that the
chicken lived in a nearby farm, that students had made two
field trips to visit them, and that children had calculated the
expenses of their field trips with the spreadsheet program.
The project also entailed contextual factors, such as caring
about the rights of the two chicken and understanding the
environmental effects of their visits to the farm.

Another common approach linked with the pedagogy of
the school was to make use of graphical applications to build
conceptual maps of the current project. The teacher also
explained that the computers were easier to bundle with
pedagogy after children had lost some interest in the laptops’
computers games, as at the beginning her students used the
computer to play games. One teacher told that a commonly
used strategy to develop knowledge about dimensions and
mathematics was to use the ‘micro worlds’ application and
mathematical games on the computers.

During the project work, the teacher assured students’
activeness by walking around between students. The teacher
said that keeping the class focused was quite difficult being
the only teacher in the classroom, but she was also helped
by other students. During the classroom observation the
teacher talked to students about their work and at the same
time walked back and forth between groups, aiding them
with technical issues.

The school could not require students to acquire school
books for their classes, which meant that teachers had to
find alternative sources of knowledge that were useful for
their current projects. Similar to the teacher at Santa Maŕıa
del Rio, quoted earlier in this text, one teacher explained
that she searched for information in school books and in the
web, and in the case of the digital material she distributed
the sources in .pdf format to the students’ computers.

Although the laptops had wireless connection, the wire-
less router in the school main building did not have the
capacity to reach the classroom building, where the laptops
were used. However, the teachers complemented this part
by bringing students to work with the Internet on the con-
nected computers in the system laboratory.

5. DISCUSSION AND CONCLUSIONS
The three cases showed a number of important similar-

ities and differences. First, the project-based pedagogical
models were similar between the three schools, and they
aimed at integrating 1:1 computing with various kinds of
project work. Second, all schools employed some kinds of
contextualized education in their teaching with 1:1 comput-
ers. Third, teachers employed pedagogical approaches of
the constructivist kind as well as of the instructivist kind.
Fourth, teachers used different strategies for managing dig-
ital learning material. Fifth, teachers all identified control
over the classroom as important, and they employed vari-
ous strategies for controlling the classrooms. Sixth, teachers
used intriguing strategies for presenting students’ work.

Similar project-based pedagogical models
The most significant common feature between the schools
was their similar pedagogical approaches. First and fore-
most, they all used varieties of project-based learning, and
shared similarities with the Escuela Nueva model. The Es-
cuela Nueva model was, indeed, intended for rural schools
with scarce economic resources [33]. The integration of the
curriculum subjects in each of the three schools was also
aligned with the Escuela Nueva model of integrated sub-
jects.

There again, there were slight differences in teachers’ class-
room instruction. In Santa Maŕıa del Rio, students were en-
tirely free to choose any method to construct their projects.
On the contrary, the teachers in the other two schools used a
more strictly limited, instructional approach. Those teach-
ers, for instance, planned their projects and regulated stu-
dents’ learning more through, for example, models, field
trips, and laptop exercises. Another difference was how the
students in Santa Maŕıa del Rio followed a more self-directed
learning approach as the students chose projects based on
their interest, which is well suited for facilitating intrinsic
motivation [35]. The only restriction in Santa Maŕıa del
Rio seemed to be that students were required to present
their construction with digital slides. However, it is quite
clear that compared to the other schools, students in Santa
Maŕıa del Rio were expected more metacognitive skills, self-
regulated learning, and active learning, as they frequently
evaluated their learning and their learning tools.

The pedagogies of the schools also shared similarities with
inquiry-based learning. In Santa Maŕıa del Rio, teachers
helped students to conduct research prior to their construc-
tion, while students in Normal Santa Teresita solved prob-
lems with the information provided by the teacher. Inquiry-
based learning was not as evident in Fundación Formemos,
where teachers instructed their students with pre-designed
guides. Another similarity based on the classroom observa-
tion and visits to the schools was that the classrooms had a
similar classroom design. The three schools were arguably
influenced by the Escuela Nueva model in this aspect. How-
ever, students worked with the laptops in groups of two and
three, instead of groups of six members with roles, like the
Escuela Nueva model advocates [33]. This finding is more
in line with Piaget’s and Vygotsky’s social constructivism as
students are learning together while sharing the laptops [30].
That decision was, however, not a conscious decision but it
came out of necessity: classrooms had insufficient number
of power outlets. Many computers were also in bad shape in
Santa Maŕıa del Rio and Normal Santa Teresita, which was
another reason why students shared laptops. And due to
those difficulties, none of the schools actually practiced one-

179

to-one computing, which, by definition, offers one laptop per
student.

Several additional important observations were made in
all the three schools. Firstly, in all the three schools, teachers
were empowered and independent, and they had developed
a number of practical ways of their own to utilize the lap-
tops in their teaching. Secondly, teachers in all the three in-
vestigated schools applied their own contextual adaptations
of a number of pedagogical background theories. Problem-
based (PBL) approaches [17, 20] were evident in the teach-
ers’ work. Also progressive inquiry-based learning, which is
based on implementing scientists’ methods to learning [15]
were evident in many of the cases, as well as project-based
learning, which is considered to unify problem-based and
progressive inquiry-based learning [4].

Thirdly, the teachers’ approaches used realistic, open-ended
cases and project goals, and stressed collaboration and cre-
ativity among their projects. In practice, the pupils were
given a lot of responsibility and self-direction in their project
works, which spanned over a multiple of school topics. Fourthly,
while one-to-one computing activities were utilized to teach
distinct school topics, such as mathematics, informatics, agri-
culture, and anatomy, the computers were widely utilized in
cross-disciplinary pupils’ projects. Fifthly, in addition com-
munity outreach was one important aspect in many of the
projects. Sixthly, in many cases pupils’ knowledge-construction
processes were not limited to one tool, such as the laptop,
but pupils were encouraged to construct and express knowl-
edge on any platform of their preference.

Context based education
Contextualized education was a clear pattern between the
schools. In Santa Maŕıa del Rio, the students’ interests were
probably the reason why much of the student work had been
context-related. In Fundación Formemos the agrarian focus,
with or without the collaboration of external partners, had
guided the teachers to work with tasks based on the real-
ity of the students. In Normal Santa Teresita, the teachers
project ‘Justin is a chicken and Mary is a hen’ integrated
different disciplines to teach the students how to take care
of chicken. In other words, all the cases shared a strong
thread of education supported by the surroundings of the
schools. The strongest relation to agrarian education was
arguably found in Fundación Formemos and Normal Santa
Teresita, possibly because these schools were more rurally
located than Santa Maŕıa del Rio was.

It can be argued that the context and project-based ed-
ucation in Fundación Formemos and Normal Santa Tere-
sita shared similarities with the experimentally implemented
pedagogy in a previously reported Tanzanian school case,
where one educational goal in that school’s OLPC project
was to teach the pupils general health care [3]. This finding
supports the view that contextual grounding, or meaningful
relationship between teaching and students’ life, is an im-
portant factor for 1:1 computing, which has been suggested
in earlier research [36, 18].

Different pedagogical strategies with the laptops
In each of the cases, the teachers discussed different types
of pedagogical strategies in their one-to-one mode of ed-
ucation. One teacher in Santa Maŕıa del Rio explained
how he used the laptops to develop a Wikipedia page with
tourist information. Another teacher explained a strategy

to teach geography by using the laptop’s map application
to describe Colombia’s position in relation to the South and
North American continents. In addition, teachers reported
that students in general were asked to present their finished
work using slideshows. In some strategies the laptop was
a supportive tool for learning, whereas in others it was the
main vehicle for learning.

Similarly, in Fundación Formemos the laptop was used
as a tool of measurement in agriculture education, but also
used to creatively edit pictures of the human body to learn
about the human anatomy. The same pattern was found be-
tween the different approaches of teachers in Normal Santa
Teresita. One example combined various subjects using the
laptops as a glue that bound the subjects together: teachers
instructed students to learn to calculate the costs of chicken
farming using spreadsheet software. Another approach to
develop knowledge of spaces was to explore applications of
micro worlds in the computer. Our findings propose that
teachers employ, with the laptops, strategies of both instruc-
tional and constructional variety.

Digital distribution of educational material
Teachers from the three schools reported that they down-
load educational material from the Internet. However, the
schools’ strategies were slightly different from each other, es-
pecially in the case of Fundación Formemos. In Santa Maŕıa
del Rio, the teachers built digital libraries and distributed
them to the students that needed material for their projects.
The teachers in Normal Santa Teresita similarly downloaded
educational material to support students’ projects by dis-
tributing the material to the children’s laptops. The strat-
egy to build a digital library in Santa Maŕıa del Rio was also
slightly different to Normal Santa Teresita’s, as the teacher
downloaded material to support each project. Teachers’
strategies in Fundación Formemos differed from the other
schools regarding the aspect of distributing digital material,
as the teachers partly develop their ‘guides’ using material
from the web-based education resource center provided by
the Ministry of Education. In teaching human anatomy in
Fundación Formemos, the teachers distributed the down-
loaded Wikipedia pictures of the human body so that stu-
dents learned by editing the material.

Controlling learning
One of the critiques of one-to-one computing has been that
games and other entertainment material can distract stu-
dents [34]. The three schools in this study shared similar ap-
proaches to monitoring and regulating student participation.
The teachers trusted their students to announce inactivity
of other students. Moreover, the teachers screened inactiv-
ity by frequently inquiring students about their progress. In
Fundación Formenos, one of the six group members had the
responsibility to make sure that the other group members
were active.

Presenting student work
One of the most interesting findings, from our point of view,
were the teachers’ strategies to present student work in Fun-
dación Formemos and Santa Maŕıa del Rio. In Fundación
Formemos, students presented, in annual workshops, pho-
tos and video recordings from their fieldwork in large-scale
agricultural projects. In Santa Maŕıa del Rio, students were
often asked to prepare and present their finished projects

180

using slide shows. One major difference is how Santa Maŕıa
del Rio had built a support structure to facilitate students’
slide presentations. The informatics teacher is responsible
for teaching students how to use slides, and the same teacher
is responsible for supporting students when they face diffi-
culties with preparing their slideshows.

5.1 Conclusions
The first implication of this study is that it did not sup-

port the critique of one-to-one computing’s absent pedagogi-
cal guidelines [37]. Teachers in this study have instead found
different ways to integrate the computer into curriculum ac-
tivities, where the computer is used both as a tool and as
the main vehicle of learning. It is possible that teachers in
other parts of the world have also found ways of integrat-
ing the computers in their own ways. It is, however, more
likely that the large South American OLPC rollouts in, for
instance, Uruguay and Peru have increased the availabil-
ity of educational material for the region [22]. In addition,
the results of this study indicate that the Colombian Es-
cuela Nueva reform with its rural educational features and
student-centered pedagogy have further supported the inte-
gration between computers and education. This raises the
question whether initiatives in Africa and Asia could be ben-
efited by considering elements similar to the Colombian Es-
cuela Nueva model.

A second implication of this study is concerned with the
schools’ strong focus on context related school projects. This
raises the question how much one-to-one computing initia-
tives should take the context of the students into account
in pedagogical planning. It can also be questioned how im-
portant context related student work is to one-to-one ini-
tiatives. This finding supports the claims about the impor-
tance of context related activities in one-to-one computing
[18]. This study indicates that contextual elements should
be given great focus in teacher education and in classrooms.

A third implication of this study is concerned with how
teachers have adopted strategies where the laptop is shared,
which is of course in contrast with the very idea of one-to-
one computing. However, other researchers [27] have also
indicated that one-to-one computers are in fact shared in
some developing country contexts due to insufficient power
sources. This study shows that the poor quality of the com-
puters and absent technical support are additional reasons
why it is likely that computers are shared in groups in sim-
ilar contexts. Moreover, the poor quality of the computers
have been discussed in [25], and the lack of technical sup-
port in [36]. The consequences of group sharing deserves to
be studied further as the laptops are not designed for group
use. Likewise, the shortage of ICT devices in developing
countries have been shown to increase gender injustice in
schools [26].

This study’s main empirical contribution to literature is
its rich presentations of strategies of three shools, which uti-
lize one-to-one computing. It is possible that teachers in
similar one-to-one initiatives could be inspired by the teach-
ers’ strategies in this study. One strategy, which could likely
be successful is for instance to ‘outsource’ the technical sup-
port to the schools’ most ICT competent teacher, or, like in
Santa Maria del Rio, to the informatics teacher. The benefit
from such a strategy is that all teachers do not not need to
possess deep technical knowledge. Various well-working sup-
port models are many, and good solutions might be found

in similar studies elsewhere.

6. REFERENCES
[1] Changing the conversation about teaching learning &

technology: A report on 10 years of ACOT research.
Technical report, Apple Computer, Inc., California,
USA, 1995.

[2] A. Andersson and Å. Grönlund. A conceptual
framework for e-learning in developing countries: A
critical review of research challenges. The Electronic
Journal on Information Systems in Developing
Countries, 38(8):1–16, 2009.

[3] M. Apiola, S. Pakarinen, and M. Tedre. Pedagogical
outlines for OLPC initiatives: A case of Ukombozi
school in Tanzania. In Proceedings of IEEE Africon
2011 Conference, Livingstone, Zambia, 13th–15th
September 2011.

[4] B. J. S. Barron, D. L. Schwartz, N. J. Vye, A. Moore,
A. Petrosino, L. Zech, J. D. Bransford, T. Cognition,
and T. G. at Vanderbilt. Doing with understanding:
Lessons from research on problem- and project-based
learning. The Journal of the Learning Sciences,
7(3&4):271–311, 1998.

[5] V. Colbert, C. Chiappe, and J. Arboleda. The new
school program: More and better primary education
for children in rural areas in Colombia. In H. M. Levin
and M. E. Lockheed, editors, Effective Schools in
Developing Countries. The Falmer Press, London, UK,
1993.

[6] M. Cox, M. Webb, C. Abbott, B. Blakeley,
T. Beauchamp, and V. Rhodes. ICT and pedagogy: A
review of the research literature. ICT in Schools
Research and Evaluation Series 18, Department for
Education and Skills, 2004.

[7] J. W. Creswell. Qualitative Inquiry and Research
Design: Choosing Among Five Approaches. Sage
Publications, Thousand Oaks, CA, USA, 3rd edition,
2007.

[8] L. Cuban. Oversold and Underused: Computers in the
Classroom. Harvard University Press, Cambridge,
Mass., USA, 2001.

[9] M. Denscombe. The Good Research Guide for
Small-Scale Social Research Projects. Open University
Press, Berkshire, England, 3rd edition, 2007.

[10] M. Duveskog, M. Tedre, C. Islas Sedano, and
E. Sutinen. Life planning by digital storytelling in a
primary school in rural Tanzania. Educational
Technology & Society, 15(4):225–237, 2012.

[11] Y. Engeström, R. Miettinen, and R.-L. Punamäki.
Perspectives on Activity Theory. Cambridge University
Press, Cambridge, MA, USA, 1999.

[12] B. A. Ezumah. Toward a Successful Plan for
Educational Technology for Low-Income Communities:
A Formative Evaluation of One Laptop Per Child
(OLPC) Projects in Nigeria and Ghana. PhD thesis,
Howard University, 2010.

[13] S. Fox Buchele and R. Owusu-Aning. The one laptop
per child (OLPC) project and its applicability to
Ghana. In Proceedings of the 2007 International
Conference on Adaptive Science and Technology, pages
113–118, Accra, Ghana, December 10–20 2007.

181

[14] Å. Grönlund, T. Englund, A. Andersson, M. Wiklund,

and I. Norén. Unos uno Årsrapport 2012. Annual
Report 2012, Örebro Universitet, 2013.

[15] K. Hakkarainen. Emergence of progressive-inquiry
culture in computer-supported collaborative learning.
Learning Environments Research, 6(2):199–220, 2003.

[16] H. Härtel. Low-cost devices in educational systems:
The use of the “XO-laptop” in the Ethiopian
educational system. Deutsche Gesellschaft für
Deutsche Gesellschaft für Technische Zusammenarbeit
(GTZ) GmbH, January 2008.

[17] C. E. Hmelo-Silver. Problem-based learning: What
and how do students learn? Educational Psychology
Review, 16(3):235–266, 2004.

[18] M. Hooker. 1:1 Technologies/Computing in the
Developing World: Challenging the Digital Divide.
The Global e-Schools and Communities Initiative
(GESCI), Nairobi, Kenya, 2008.

[19] F. A. Inan and D. L. Lowther. Laptops in the K-12
classrooms: Exploring factors impacting instructional
use. Computers & Education, 55(3):937–944, 2010.

[20] D. H. Jonassen. Toward a design theory of problem
solving. Educational Technology Research and
Development, 48(4):63–85, 2000.

[21] K. Juuti and J. Lavonen. Design-based research in
science education: One step towards methodology.
Nordic Studies in Science Education (NorDiNa),
4:54–68, August 2006.

[22] K. L. Kraemer, J. Dedrick, and P. Sharma. One
laptop per child: Vision vs. reality. Communications
of the ACM, 52(6):66–73, 2009.

[23] P. McEwan. Evaluating multigrade school reform in
Latin America. Comparative Education,
44(4):465–483, 2008.

[24] P. Mozelius, K. Rahuman, and G. Wikramanayake. A
Sri Lankan one-to-one computing initiative and its
impact on formal learning in primary school, Sri
Lanka. Hearld Journal of Education and General
Studies, 1(1):16–21, 2012.

[25] P. Mozelius, K. Rahuman, and G. Wikramanayake.
Two years of one-to-one computing in Sri Lanka - the
impact on formal and informal learning in primary
school education. In T. Bastiaens and G. Marks,
editors, Proceedings of World Conference on
E-Learning in Corporate, Government, Healthcare,
and Higher Education (ELEARN), pages 1192–1201,
Chesapeake, VA, USA, 2012. AACE.

[26] W. M. Olatokun. Gender and ICT policy in Africa:
Issues, strategies and policy options. Information
Development, 24(1):53–65, 2008.

[27] J. Pal, R. Patra, S. Nedevschi, M. Plauche, and
U. Pawar. The case of the occasionally cheap
computer: Low-cost devices and classrooms in the
developing world. Information Technologies and
International Development, 5(1):49–64, 2009.

[28] W. R. Penuel. Implementation and effects of
one-to-one computing initiatives: A research synthesis.
Journal of Research on Technology in Education,
38(3):329–348, 2006.

[29] H. Pettersson. Datorn som hjälpmedel - ett kreativt
redskap, en distraktion eller en väldigt dyr

skrivmaskin? Master’s thesis, Malmö Högskola,
Malmö, Sweden, 2012.

[30] A. Pritchard and J. Woollard. Psychology for the
Classroom: Constructivism and Social Learning.
Routledge, London, UK, 2010.

[31] J. J. Randolph. Multidisciplinary Methods in
Educational Technology Research and Development.
HAMK University of Applied Sciences, Hämeenlinna,
Finland, 2008.

[32] E. Schiefelbein. In Search of the School of the XXI
Century: Is the Colombian Escuela Nueva the Right
Pathfinder? UNESCO Regional Office for Education
in Latin America and the Caribbean, 1991.

[33] E. Schiefelbein, R. Vera, H. Aranda, Z. Vargas, and
V. Corco. En Busca De La Escuela Del Siglo XXI:
¿Puede Darnos La Pista La Escuela Nueva De
Colombia? Universidad Pedagógica Nacional, 1986.

[34] V. W. Setzer. A critical view of the “one laptop per
child” project, dept. of computer science, university of
são paulo, brazil., February 26 2009.

[35] G. A. Straka, editor. Conceptions of Self-Directed
Learning: Theoretical and Conceptual Considerations.
Waxmann, Münster, Germany, 2000.

[36] M. Tedre, H. Hansson, P. Mozelius, and S. Lind.
Crucial considerations in one-to-one computing in
developing countries. In P. Cunningham and
M. Cunningham, editors, Proceedings of IST-Africa
2011 Conference, Gaborone, Botswana, May 11-13
2011.

[37] T. Unwin, editor. ICT4D: Information and
Communication Technology for Development.
Cambridge University Press, Cambridge, UK, 2009.

[38] D. Wiliam. Comments on Bulterman-Bos: What
should education research do, and how should it do it?
Educational Researcher, 37(7):432–438, 2008.

182

A JavaScript Library for Visualizing Program Execution

Teemu Sirkiä
Department of Computer Science and Engineering

Aalto University, School of Science
Espoo, Finland

teemu.sirkia@aalto.fi

ABSTRACT
In this poster, we present a JavaScript library which can be
used to create educational program visualization applications
for multiple programming languages. By using modern web
technologies, visualizations can be embedded in web pages,
allowing them to be used with all modern web browsers on
different platforms.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer science education

General Terms
Human factors

Keywords
program visualization, introductory programming, JavaScript

1. INTRODUCTION
Program visualizations can help students to understand

the correct execution model of the given program. Various
program visualization applications do exist but they are often
tightly bound to a specific programming language and are
standalone applications.

There are few JavaScript-based program visualization ap-
plications or frameworks which support integrating the vi-
sualizations seamlessly into web pages together with course
materials.

It is also difficult to share best practices of program visu-
alization because the visualization applications for different
programming languages are completely independent. A com-
mon toolkit to build such applications does not exist.

In this poster, we present the current status of a new
JavaScript library which provides a framework for building
educational program visualization tools, and discuss some of
the key concepts behind this library.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the Owner/Author.
Koli Calling ‘13, November 14–17, Koli, Finland
ACM 978-1-4503-2482-3/13/11 ...$15.00
http://dx.doi.org/10.1145/2526968.2526990

2. THE LIBRARY
Instead of a complete program visualization application,

the library provides an API for creating language-specific
visualizations. The library contains the common basic func-
tionality such as controlling the animation step-by-step, mov-
ing backwards and forwards, showing explanation texts as
well as the most common visualization steps such as fetching
values, evaluating operators and assigning values to variables.

The current capabilities of the library can be described in
terms of the two-dimensional engagement taxonomy 2DET
[6]. On the direct engagement dimension, the library supports
Controlled viewing of a program visualization. On the content
ownership dimension, the library supports only the lowest
level, Given content.

2.1 Embedding in Online Materials
Electronic materials are becoming more popular, in part

because it is possible to include interactive elements together
with the text.

As the library is implemented in JavaScript instead of Java
or Flash, the library works with the modern browsers ranging
from mobile and tablet devices to desktops. The library could
be used as a platform to implement visualization applications
in the same vein as UUhistle [7] and Jeliot 3 [4].

The JSAV library [2] has a similar purpose as it provides a
JavaScript-based general framework for creating animations.
The main difference between JSAV and this library is that
JSAV is meant for algorithm visualization instead of program
visualization and therefore the abstraction level of JSAV is
higher.

Online Python Tutor [1] is an example of an existing
program visualization application whose visualizations can
be embedded in web pages. However, it does not provide a
general toolkit for creating visualizations.

ViLLE [5] works with modern browsers, but instead of
providing embeddable visualizations, ViLLE is an online
learning platform.

2.2 Multiple Languages
The goal of our library is to be language neutral while still

providing a toolkit for creating language-specific visualiza-
tions as opposed to ViLLE which is ostensibly a language-
independent system but it supports only a small subset of
multiple languages.

The code to be visualized is transformed into a language-
independent intermediate language that the library can exe-
cute. Jeliot 3 uses a similar approach to visualize Java code
by using its own intermediate language called MCode [3].

183

Figure 1: A part of the course materials (in Finnish). A visualization related to Booleans is embedded in
the middle of the chapter. Students are expected to realize, among the other things, that the value in the
variable testi remains the same although the value in variable eka is just about to change.

The language-neutral approach benefits the applications
using the library, because they can use the new features
without the need to implement the same feature into each
application separately.

2.3 Custom Visualizations
In the most existing tools, a developer can not change

neither the layout nor the visual style of visualizations.
As the library does not create or define the layout, the

developer using the library can decide how the visualization
will look like. The structure of HTML elements and CSS
stylesheet will create the visual appearance and therefore it
is quite easy to change the style.

By changing the layout or the style, the developer can
customize the animation to suit its specific purpose. For
example, unnecessary views (such as the stack) can be left
out. The same code can be visualized in many ways showing
more or fewer details.

3. USE CASE
This fall, a new basic programming course started at Aalto

University. The course materials are online as a kind of an
electronic textbook which contains text, visualizations and
exercises.

The visualizations (see Figure 1) are built by using the
library and currently the materials contain over 50 animations
of programs written in Scala. The style of the animations is
similar to that in UUhistle.

The material works in modern browsers, including mobile
and tablet devices, although the display resolution of the
mobile devices might not be optimal for this kind of material.

4. FUTURE WORK
As the development of the library has just begun, there is

plenty to do in order to provide a good toolkit for creating
program visualization applications for different programming
languages.

Our goals include better support for multiple programming
paradigms, in particular functional programming in addition
to imperative and object-oriented programming.

Currently the library supports only the controlled viewing
of given content in terms of the 2DET. The support for
higher levels of learner engagement both in the form of direct
engagement and content ownership are being explored.

5. REFERENCES
[1] P. J. Guo. Online Python Tutor: Embeddable Web-Based

Program Visualization for CS education. In Proceeding of the
44th ACM technical symposium on Computer science
education, SIGCSE ’13, pages 579–584, New York, NY, USA,
2013. ACM.

[2] V. Karavirta and C. A. Shaffer. JSAV: the JavaScript
algorithm visualization library. In Proceedings of the 18th
ACM conference on Innovation and technology in computer
science education, ITiCSE ’13, pages 159–164, New York, NY,
USA, 2013. ACM.

[3] A. Moreno. The Design and Implementation of Intermediate
Codes for Software Visualization. Master’s thesis, University
of Joensuu, 2005.

[4] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari.
Visualizing Programs with Jeliot 3. In Proceedings of the
working conference on Advanced visual interfaces, AVI ’04,
pages 373–376. ACM, 2004.

[5] T. Rajala, M.-J. Laakso, E. Kaila, and T. Salakoski. ViLLE:
a language-independent program visualization tool. In
Proceedings of the Seventh Baltic Sea Conference on
Computing Education Research - Volume 88, Koli Calling ’07,
pages 151–159, Darlinghurst, Australia, Australia, 2007.
Australian Computer Society, Inc.

[6] J. Sorva, V. Karavirta, and L. Malmi. A Review of Generic
Program Visualization Systems for Introductory
Programming Education. Trans. Comput. Educ., To appear.

[7] J. Sorva and T. Sirkiä. UUhistle: A Software Tool for Visual
Program Simulation. In Proceedings of the 10th Koli Calling
International Conference on Computing Education Research,
Koli Calling ’10, pages 49–54, New York, NY, USA, 2010.
ACM.

184

How Do Students Learn to Program
in a Connected World?

Jian Shi
School of Electronics & Computer Science

University of Southampton
Southampton, Hants, UK

+44 23 8059 6000
js9g09@ecs.soton.ac.uk

Su White
School of Electronics & Computer Science

University of Southampton
Southampton, Hants, UK

+44 23 8059 6000
saw@ecs.soton.ac.uk

ABSTRACT
Computer scientists have been interested in the recurrent problem
of teaching introductory programming for years. New
undergraduates come from varied backgrounds with different
prior experiences, so it is a complex task to ensure an equal
learning outcome for each student. A large body of relevant
literature exists. However, this mainly dates from an era when
practical based learning activities were only supported by paper
resources. It may therefore be interesting and perhaps helpful to
teachers to gather insights into the contemporary practices of
undergraduates’ accessing information sources when learning to
program.

This poster presents a study exploring the learning practices of
students enrolled on introductory programming courses. A mixed
methods approach is designed to triangulate the gathered
quantitative and qualitative data in an effort to expose practices,
beliefs and attitudes to learning from a perspective of identifying
what the student does. The poster will present interim findings
and discuss the challenges and potential advantages of working
within a mixed methods research framework.

Categories and Subject Descriptors
K.3.2 [Computers and education]: Computer and information
science education – computer science education

General Terms
Human Factors.

Keywords
Perception, education, learning programming, experience, mixed
methods, Nominal Group Technique.

1. INTRODUCTION
Every year thousands of students arrive at university who will be
taught introductory programming. The backgrounds and prior

experience of these students will vary, and the role of the
academic is to strive to ensure wherever possible an equal
outcome for all; establishing is a sound foundation for future
study. The introduction needs to be technically robust, establish
and build sound learning practices and be taught at a level and in
a manner which sustains motivation across the cohort irrespective
of prior experience or expertise.

The research questions for this study are:
1)What effect do a student’s background, attitude, and beliefs

have on their subsequent approaches and practices when
learning to program?

2)Whilst learning to program to what extent do different students?
a)Gain or lose confidence and motivation.
b)Modify their approaches to learning as they progress?

3)How do students integrate their formal and informal learning
activities? To what extent do students

a)Rely on formally provided materials and exercises?
b)Develop individual approaches to learning which

integrate real world and online activities and materials?

2. BACKGROUND
Learning to program is an activity which may be very different
from the learning tasks with which most new undergraduate
students are familiar. This is perhaps the reason why academics in
computer science have become so concerned with this initial
educational challenge. Usually universities recruit students who
are judged to be academically capable of successfully completing
their studies. The task therefore is to ensure that students are
taught and learn in such a way that they achieve this potential,
acknowledging that some students may choose to change the
direction of their academic career or for external reasons may not
be able to sustain the motivation or the workload which is
necessary for ultimate success.
In terms of understanding, this study adopts a framework of
teaching strategies and modeling student learning suggested by
Biggs [1], in which academics should focus on “what the student
does” (Level 3) to optimize the pedagogy strategy.

3. METHODOLOGY
A range of established approaches in research are used in order to
study student behaviors and teaching interventions better.
Quantitative methods are widely used to gather base data, whilst
qualitative approaches enable the researcher to categorise
subjective factors such as thoughts, beliefs and attitudes. Since
this study is aiming to understand “what the student does” while
learning to program, gathering just quantitative data would not be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Koli Calling '13, Nov 14-17 2013, Koli, Finland
ACM 978-1-4503-2482-3/13/11.
http://dx.doi.org/10.1145/2526968.2526991.

185

sufficient. Qualitative evidence should be collected as much as
possible to support research outcomes. Therefore, a mixed
methods approach which has the advantage of anticipating and
remedying the potential gaps and risks in our data collection
should be adopted.
Interviews and focus group discussion are common approaches
used to gather qualitative data, although typically such tools are
also used to gather smaller amounts of short statement/comment
style qualitative data. Interviews and Nominal Group Technique
(NGT) [2] are also common approaches used to gather qualitative
data. The NGT is one form of structured “brainstorming”, aiming
to ensure that each participant obtains an equal discourse rights
and actively support and cultivate independent thinking during the
entire survey process. Typically, it is used as a wide spread
decision making method for generating ideas into one particular
sequential list.
A mixed methods approach for the whole study has been designed
combining quantitative and qualitative methods listed above. The
respondents were AY2012-13 students selected from 1st year
undergraduate introductory programming in the University of
Southampton. An initial survey was designed to provide basic
data in answer to some of the research questions. Subsequent
weekly cohort wide surveys could help the researcher note and
collect the data about learners’ learning progress, as well as some
contemporaneous observation. Having identified some interim
findings from a subsequent end of term survey and NGT study,
additional data is scheduled to be collected from the students
using individual and focus group interviews.

4. DATA COLLECTION

4.1 Pilot Study
For the purposes of obtaining an overview of the approaches of
undergraduate students when they are introduced to programming
at universities and trailling future formal surveys from the
responses, a preliminary pilot study in a smaller scale was
conducted with AY2011-12 students. The questions covered
standard teaching processes in the UK universities – lectures,
assessments and feedback. Plus, students’ personal information
should be considered due to the diversity

4.2 Initial Survey
A survey of the AY 2012-13 cohort was conducted in the form of
questionnaire in September 2012 prior to teaching beginning. It
aimed to gain a general understanding of how much prior
experience our new students had and their initial attitudes towards
learning to program, including whether they were motivated and
their beliefs about how difficult they assumed programming
would be. The collected responses provided basic evidence for the
first research question. Among the 169 completed responses, 40
participants (23.7%) stated that they were total novices.
Approximately 95% respondents believed that they were
motivated (in which two thirds were highly motivated), and had
high expectations.

4.3 Weekly Survey
This short online survey was scheduled between October 2012
and December 2012 in students’ weekly practical labs, aiming to
trace students’ learning progress. This survey was designed to
investigate responses relevant to the second research question. In
order to maximise the response rate, questions were designed to

be concise and easy to answer. Students would only need to
simply tick any that apply.

Having analyzed the responses, it can be summarized that their
most challenging topics are “Testing & Debugging”, “Array &
API” and “Overloading”.

4.4 End of Term Survey
There are 46 completed responses from an online questionnaire
survey conducted to investigate to what extend the Web impacts
on the students’ learning to program once the students have
finished the introductory module.

The most popular online platform was a public search engine,
while the formally provided learning environment comes second.
Participants tend to use the Web the most when they were
introduced to a new theory or looking for help when they got
stuck. In terms of the reason, participants believe that the Web is
convenient to use, and it is the best place to find information.

4.5 NGT Study
This NGT study focused on 1st year undergraduates’ detailed
perspective when learning to program, especially identifying their
learning approaches. Since this survey is conducted by adopting
the Nominal Group Technique, participants were asked to provide
their opinions on A5-size index cards and have them ranked by
using the Zapper voting device.
Interesting findings have been gained in some level according to
participants’ responses:
 Little use was made of the printed notes and set textbook,

because it is felt that this learning approach is much slower
than searching the Web.

 Most participants use the Web when they get stuck while
learning to program. It is believed that the Web could help
to avoid asking stupid or obvious questions and save time.

 If the participants failed to obtain the information they
wanted from the Web, they might ask their friends and have
a discussion.

 It is worth mentioning that participants experienced loss of
motivation and feel frustration if they failed to solve the
problems from the Web and their friends.

At the time of writing, the responses are still under analysis. If
necessary, some individual interviews will be undertaken to gather
much more in-depth insights from our students.

5. CONCLUSION
Evidence so far suggests that there have been some changes in
routine practice among learners. It will be interesting to discover
whether the approaches are consistent across achievement and
experience levels. Insights into successful strategies may assist in
designing learning activities to augment programming
assignments.

6. REFERENCES
[1] J. B. Biggs and C. Tang, Teaching for quality learning at

university, 4th Ed. Open University Press, 2007, pp. 16–
20.

[2] R. B. Dunham, “Nominal Group Technique: A Users’
Guide.” 1999.

186

Teaching Artificial Intelligence
Using a Web-Based Game Server

Stefan Friese
University of Duisburg-Essen

Universitätsstr. 9
45141 Essen, Germany

stefan.friese@icb.uni-due.de

Kristian Rother
University of Duisburg-Essen

Universitätsstr. 9
45141 Essen, Germany

kristian.rother@icb.uni-due.de

ABSTRACT
Games are a classical field of application for concepts of ar-
tificial intelligence (AI). We outline a didactic concept for
teaching AI to Business Information Systems students at
the university level and a web-based game server that was
implemented to support this concept. Our results show an
improved engagement of students as well as a flexible tech-
nical basis for AI education and AI research which can be
applied in various learning and research contexts.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: [Computer Uses in
Education]; K.3.2 [Computers and Education]: [Com-
puter and Information Science Education]

General Terms
Game Server, AI Education

Keywords
Artificial Intelligence, Games, Teaching, Server

1. INTRODUCTION
The concepts for the course described in this paper are

aimed at teaching AI based on games to graduate students
in Business Information Systems at a German university.
Using games to teach CS and AI is a common concept [8,
6, 2, 10]. An increased engagement of students is expected,
and games provide an environment of a certain level of com-
plexity and a well-known set of rules.

2. GAME CHOICE CRITERIA
The game choice is important. It depends on the AI tech-

niques to be taught and the properties of relevant real-world
problems. In our case, these are economic planning and de-
cision problems. A suitable level of complexity is required
and the game should not be well known to start students

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
Koli Calling ’13, Nov 14-17 2013, Koli, Finland
ACM 978-1-4503-2482-3/13/11.
http://dx.doi.org/10.1145/2526968.2526992

on equal footing. The following table lists our criteria based
on classification schemes in [7, 5, 9] (completeness of infor-
mation, randomness), [1] (alea, agôn, mimicry, ilinx) and
[3] (pace, player structure, teleology, time representation,
savability, determinism):

• Completeness of Information Perfect information
games were excluded (perfect information is less com-
mon in economical decision problems).

• Randomness/Alea Purely random games are un-
suitable (no player influence), but a certain amount
of randomness, e.g. a random initial state, may fit.

• Competitiveness/Agôn A competitive game should
be chosen to fit economical environments. This mat-
ches our course setting of competing teams.

• Mimicry A player being an imaginary character or
not had no influence on the game choice.

• Psychomotor skills/Ilinx We exclude games requir-
ing physical skills as robotics is beyond our scope.

• Pace Real-time games imply a higher level of complex-
ity regarding protocols and communication. As many
real-world problems in our scope can be represented in
a turn-based way, we favor these games.

• Player structure Two adversarial players seem to
be a good choice, because testing and evaluation of the
implemented agents is easier for smaller sets of players.

• Teleology To be able to simulate tournaments in a
reasonable amount of time, the game should be finite.

• Time Representation As we set a focus on turn-
based games already, the representation of time de-
faults to discrete steps.

• Savability It should be possible to interrupt and re-
sume matches as this simplifies testing agents.

• Determinism For evaluation, deterministic effects of
actions are desirable. Matches should be repeatable.

3. THE GAMES OF ROK AND TENCARDS
Our choice was the trick-based two-player card game Rok,

a classical but rather unknown game matching our criteria.
A match starts with a bidding phase, followed by a playing
phase. Both players have a hand that is only known to
them and a board where the top cards are visible. Points

187

are awarded for won tricks and certain cards in a trick1. Rok
has similarities to Bridge, Skat and Doppelkopf.

Learning a new game and applying AI concepts to a com-
plex scenario is a hurdle for students from a conceptual
and technical perspective. Hence we developed tencards,
a custom-tailored, simple but non-trivial introductory game
which prepares students for the more complex Rok task. The
rules of this two-player game are extremely simple: There
are ten cards numbered one to ten. Each player has three
cards, while the remaining ones form a hidden stack. Each
player plays a card from his hand or a stack card. The player
who played the higher card wins the trick and continues.
The game is won by the first player who wins two tricks.
Despite the simplicity, non-trivial situations can occur.

4. IMPLEMENTING A GAME SERVER
The technical part of our concept consists of the develop-

ment of an online game server. Existing game servers serve
special needs (e.g. ggp server for general game playing, rul-
ing out incomplete information games) or their architecture
does not fit the requirements (e.g. Cubeia Firebase).

The server should support arbitrary games with a clean
abstraction between game logic, visualization and general
operations and have little dependency on the client system.
Matches should be possible between human players and/or
AI agents. Human games are relevant to test AI agents and
to gain data of human behavior for techniques like CBR. As
we focus on a solution usable beyond the borders of our own
university, there should be a language-independent interface
for external AI players. Individual matches and tournaments
should be possible and the server should be easy to integrate
with our Prolog learning environment EPPU [4].

4.1 Technical Overview
The server has been implemented using declarative con-

cepts of Prolog where possible, alongside with Java-based
server functionality (using Apache Tomcat), a web-based
GUI (HTML, CSS, JavaScript) and a PostgreSQL database.

The core of the game engine is a set of game rule descrip-
tions implemented in Prolog. This language is well-suited
to describe the state transitions caused by the players’ ac-
tions. On top of the rule description of a game, there is a
declarative description of its visualization (called a view).
Views determine how a match state should be presented to
the players, independent of any actual GUI technology. The
Java server transforms them into actual JavaScript code.

4.2 Communication and Integration
The engine is able to communicate directly with Prolog

agents developed by local students in EPPU. A second inter-
face has been implemented to call remote AI players imple-
mented in arbitrary languages using a network connection.
This way it is possible to implement an agent e.g. in Java
and run it on a remote host. An AI agent is stateless and
has to be able to answer to requests containing a formal de-
scription of the match state and a private information store.

5. RESULTS
The two-step concept with two games in our AI project

eased students into agent development first but left enough

1Complete rules on http://udue.de/gameserver

time to focus on the more complex card game Rok. The
availability of a web-based system enables a quick evalua-
tion of the performance of an agent and debugging during
the development process thus shortening the feedback loop
and enabling easy remote collaboration. These benefits lead
to a working hypothesis that the performance of the devel-
oped agents (measured in wins) should be higher after the
introduction of the game server, ceteris paribus.

The agents were evaluated in large tournaments where
all agents (including those from earlier semesters) played
against each other in sets of 4000 matches to rule out random
effects. The results are promising: All match sets between
old and new agents were won by the new agents with the
exception of one extraordinary good old agent. However we
need more empirical evidence to claim an effect of the game
server because the number of participants was low (41 in six
semesters) and isolating the effect is difficult. Qualitative,
oral student feedback corroborates the working hypothesis.

The game server has also proven to be a useful tool in re-
search because it allowed us to quickly prototype new games
and to prototype and test agents for different games (espe-
cially Rok, Bridge and Poker).

6. REFERENCES
[1] R. Caillois. The definition of play and the classification

of games. In K. Salen and E. Zimmerman, editors,
The Game Design Reader: A Rules of Play Anthology,
pages 122–155. MIT Press, 2006.

[2] P. Drake and K. Sung. Teaching introductory
programming with popular board games. In
Proceedings of the 42nd ACM Technical Symposium
on Computer Science Education, pages 619–624.
ACM, 2011.

[3] A. Espen, S. S. Marie, and S. Lise. A multidimensional
typology of games. In Level Up Conference
Proceedings. University of Utrecht, November 2003.

[4] S. Friese. Measuring of and reacting to learners’
progress in logic programming courses. In Proceedings
of ITiCSE’10, pages 152–154, 2010.

[5] O. M. Halck and F. A. Dahl. On classification of
games and evaluation of players–with some sweeping
generalizations about the literature. In Proceedings of
the ICML-99 Workshop on Machine Learning in
Game Playing, 1999.

[6] P. Hingston, B. Combes, and M. Masek. Teaching an
undergraduate ai course with games and simulation.
Technologies for E-Learning and Digital
Entertainment, pages 494–506, 2006.

[7] D. Koller and A. Pfeffer. Representations and
solutions for game-theoretic problems. Artificial
Intelligence, 94:167–215, 1997.

[8] S. Kurkovsky. Engaging students through mobile game
development. In ACM SIGCSE Bulletin, volume 41,
pages 44–48. ACM, 2009.

[9] A. Macleod. Selecting games for artificial intelligence
research. In The Second Annual International
Workshop in Computer Game Design and Technology,
2004.

[10] A. McGovern, Z. Tidwell, and D. Rushing. Teaching
introductory artificial intelligence through java-based
games. In AAAI Symposium on Educational Advances
in Artificial Intelligence, North America, 2011.

188

Brain-based Programming – A Good Concept For
Schools?

Peter Antonitsch
Alpen-Adria-Universität Klagenfurt

Universitätsstraße 65-67
9020 Klagenfurt, Austria

+43(463)27003517
peter.antonitsch@aau.at

Barbara Sabitzer
Alpen-Adria-Universität Klagenfurt

Universitätsstraße 65-67
9020 Klagenfurt, Austria

+43(463)27003517
barbara.sabitzer@aau.at

ABSTRACT
“Brain-based Programming” is a teaching concept based on neu-
rodidactical principles and was originally developed for introduc-
tory programming courses at university level. As the results of a
pilot project show it seems to be a good concept because the
learning outcomes were higher than in parallel courses. Hence we
are attempting to transfer the concept of brain-based programming
to schools based on the findings of the pilot project at our uni-
versity. This paper aims at presenting the original concept and
basic ingredients as well as adaptions considered necessary for a
successful implementation at school.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]

General Terms
Human Factors, Languages.

Keywords
Programming, computer science education, brain-based learning.

1. INTRODUCTION
Learning to program is hard. How can it be made easier? This
question often appears in relevant literature and neurodidactics
may give an answer. This research field was originally introduced
in order to support students with learning difficulties. So why not
use it to reduce the learning difficulties in programming courses?
It offers proposals for effective learning that considers how the
brain works, some of them deriving from teaching approaches like
constructivism or progressive pedagogy [1]. This is the basis for
the new concept of brain-based programming that was developed
during a project of the same name and successfully tested in an
introductory programming course at the university. The paper
presents this concept as well as some results and describes an
adapted version for schools.

2. BRAIN-BASED PROGRAMMING
2.1 The Project
The project “Brain-based Programming” was initiated in order to
improve the learning outcomes of the bachelor course “Introduc-
tion to structured and object-based programming”. The course
consists of two parts, each 90 minutes per week: a lecture course
where the concepts of programming are introduced, and a
practical course, where they are put into practice. In the practical

course the students have to solve several worksheets containing
Java programming exercises and pass two written exams. Usually,
many students fail (50% -70%) and have to repeat the course.
Starting from an analysis of the errors made in these exams, a
questionnaire as well as informal interviews with students and
lecturers we developed the concept of brain-based programming.
We changed the lesson design, used different teaching and lear-
ning methods and provided the students with supplementary
brain-based worksheets and tasks. In the last winter term the con-
cept was tested and evaluated in one of seven parallel practical
programming courses. The results of the pilot project were pro-
mising. (For a detailed description of the project see [1]).

2.2 The Concept
Brain-based Lessons
The lessons were structured considering the functioning of the
brain and the different memory phases. First of all, at the begin-
ning of the semester, the students were divided in three groups de-
pending on the level of their individual programming experience:
professionals with advanced programming skills and amateurs
with basic skills, “worked” as peer-tutors or –teachers and suppor-
ted the real beginners who solved more “mini-exercises” accor-
ding to their needs and competencies they had to improve.
This type of learning requires an open setting with free work pha-
ses, considering many neurodidactical principles, for example
learning through recall (peer tutoring, pair programming), auto-
matic pattern recognition (discovery learning, learning etc.) [1].
The weekly units were divided in three phases that were not
strictly limited in time.
Questions (work in groups with peer-tutor): Open questions of the
weekly lecture should be clarified.
Discovering: Students worked in groups on reading exercises,
step-by-step instructions or worked-out examples in order to
(re)discover the topics of the lecture in their own learning rhythm.
Lab: Students solved tasks by pair programming.
Brain-based Tasks
The tasks used in the experimental group were supplementary to
the regular worksheets and contained approximately the same
amount of exercises. Contrary to the other courses the students in
the “brain-based” group had free choice concerning the exercises
and also the type of tasks. The worksheets, which are being
assembled to a booklet, contain the following exercise types:
Reading exercises, e.g. complete program code, step-by-step in-
structions or short tasks with solutions, foster discovery learning
and benefit from the brain mechanism of pattern recognition

Competence-oriented tasks enhance learning by following the
principle "practice makes permanent" [2].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
Koli Calling '13, Nov 14-17 2013, Koli, Finland
ACM 978-1-4503-2482-3/13/11.
http://dx.doi.org/10.1145/2526968.2526993

189

Detail-orientated exercises are assembled into a complex program
at the end of the course. This is based on the principle that “the
whole is more than the sum of its parts” (Aristotle, 384-322 BC).
The brain simultaneously processes parts and wholes [3].

The evaluation of the pilot project shows that the concept of
brain-based programming was successful: 70% of the students in
the experimental group passed the exam whereas the average in
the parallel groups was 42%. Regarding methods and tasks, in
particular, discovery learning (step-by-step videos, mini-exercises
with solutions, reading exercises) and cooperative learning (peer
tutoring, pair programming) were considered to be very useful.

3. BRAIN-BASED PROGRAMMING II–
ADAPTATION FOR SCHOOLS

3.1 Steps towards Brain-based Programming
To adapt the design of the pilot study to meet specifics at school
level, the following aspects have to be considered as well: Intro-
ductory programming courses at university level consist of two
distinct parts, separated over time: A series of lectures explaining
the basic concepts in a theoretical way, and a series of practical
lab courses, which allow for repetition and deeper study of the
material. At school, phases of initial theoretical input and practical
application usually are mixed within the same learning unit.

Second, at university level a well-defined learning setting based
on Java and the development environment Eclipse was used. At
school most probably different kinds of programming language
and/or development environments are in use. Comparing, for
instance, Eclipse with the Greenfoot-environment makes clear,
that corresponding representations of the programmable performer
are prone to influence the learning progress.

Third, while grading in university courses depends mainly on the
results of an intermediate and a final exam, assessment at school
has to be based on constant monitoring of the learners’ performan-
ce. Commingling of learning and assessment based on self-res-
ponsible learning can become critical as it is still not common
school culture to allow for learning from mistakes.

Moreover, and related to the last issue, (most) learners at school
age are at a different level of personal development than universi-
ty students. This concerns the ability to think in abstract terms in-
cluding the availability of appropriate problem solving strategies,
but in particular the development of general social and personal
skills like self-responsibility.

3.2 A First Proposal for Schools
Considering all of the above, the most basic concern for the ex-
tension of the study to introduce brain-based programming is to
provide comparable learning settings. The programming langua-
ges in use are Java, C# and PHP, all of which are part of the C-
language family and provide rather similar basic control- and data
structures. Based on this the didactical concept is as follows:

As some of the learners can be expected to lack experience in al-
gorithmic thinking, learning to program has to cover two phases.
During the shorter first phase learners should get in touch with
algorithms by following and describing a sequence of step-by-step
instructions what can be done without using digital devices. In the
second, longer phase algorithmization should lead to automation
by handing program code to a computer, similar to the pilot study.

As both phases have to consider periods of input and periods of
practicing, the three-step structure of the pilot-study will be slight-
ly altered by replacing “Questions” with “Instructions” and exten-

ding “Discovering” to “Questions and self-organized Discove-
ring” but keeping the final step of “Lab”. Most important, the
second step has to include activities to train self-organized and
self-responsible learning on the side of the learners.

To allow for sufficient monitoring of the learners performance by
the teachers, a peer-tutor system seems reasonable. Supposing that
some of the learners do have experiences with algorithmic thin-
king and algorithmization beforehand, the first phase is ideal to
introduce this concept to the learners and rely on the established
tutoring system during the second phase of programming/coding.

Programming, in turn, can be done by pair programming mixed
with classical forms of cooperative learning described by the
catchphrase “think – pair – share”, which means that given a
certain task first all learners have to find a solution or something
nearby by themselves, then compare the found solutions pair wise
and present a joint solution to the whole learning group.

Finally, monitoring of the learners performance will be augmen-
ted by short written assessments following a strict assessment plan
handed to the learners at the beginning of the learning phase. This
assessment plan contains the learning goals, a corresponding sche-
dule. Hence it is a strict guideline to structure the learning process
as needed by most of the learners at that age.

4. CONCLUSION AND OUTLOOK
The measures described above regard the shortcomings of the pre-
vious approaches to brain-based related programming by provi-
ding tighter structures for the learning processes by the teacher,
thus allowing phases of input, phases of practicing and phases of
internalizing to take turns in an effective way, and by varying task
representation to include the effect of multimodality, which can
go as far as leaving off the software in use and switch to offline
forms of representation, thus giving special prominence to the
competence of algorithmic thinking which is fundamental for
writing programs.

These measures shall introduce a first notion of brain-based pro-
gramming, which, referring to findings from the pilot study at uni-
versity, has much potential to be a good concept for informatics
education at school as well. Nevertheless, as is pointed out by [4,
5, 6], the fundamental competence of algorithmization could be
acquired much earlier, even at primary level, which would make it
possible to map the structure of the pilot study at university with
less adaptations to programming at secondary schools

5. REFERENCES
[1] Sabitzer, B.; Strutzmann, S. 2013, in press. Brain-based Program-

ming. Proceedings of IEEE Frontiers in Education, October 2013,
Oklahoma City, Oklahoma, US.

[2] Sousa, D. A. 2006. How The Brain Learns. Third edition. Corwin
Press, Thousand Oaks, California.

[3] Caine, G., & Caine, R. 2007. Natural learning: The basis for raising
and sustaining high standards of real world performance. Position
Paper: Natural Learning Research Insitute.

[4] CSTA: Computational Thinking in K–12 Education Teacher Re-
sources, 2nd edition. 2011. http://csta.acm.org/Curriculum/sub/Curr
Files/472.11CTTeacherResources_2ed-SP-vF.pdf.

[5] Antonitsch P., Gigacher C., Hanisch L.: Imagination, Algorithmi-
zation, Automation. Paper submitted to the
8thWIPSCE,Aarhus/Denmark,Nov. 11-13, 2013.

[6] Antonitsch P.: How to Consider Informatics in Primary Education, in
press: 25 Jahre Digitale Schule in Österreich. Proceedings of
eEducation Summer Conference, August 2013, Klagenfurt (2013)

.

190

Brain-based Teaching in Computer Science –
Neurodidactical Proposals For Effective Teaching
Barbara Sabitzer

Alpen-Adria-Universität Klagenfurt
Universitätsstraße 65-67
9020 Klagenfurt, Austria

+43(463)27003517
barbara.sabitzer@aau.at

Stefan Pasterk
Alpen-Adria-Universität Klagenfurt

Universitätsstraße 65-67
9020 Klagenfurt, Austria

+43(463)27003517
stefan.pasterk@aau.at

Sabrina Elsenbaumer
Alpen-Adria-Universität Klagenfurt

Universitätsstraße 65-67
9020 Klagenfurt, Austria

+43(463)27003517
sabrina_elsenbaumer@gmx.at

ABSTRACT
Brain-based teaching is neither a method nor a concept. It is rather
a way of teaching that tries to support the learning and memory
process in all phases from lesson design over input and practice
up to the transfer of knowledge and competencies in real situa-
tions. The proposals for brain-based teaching come from neurodi-
dactics or educational neuroscience that combines findings of
brain and memory research, didactics, pedagogy and psychology.
This paper aims at presenting concepts and methods that can faci-
litate learning and proposals for designing computer science les-
sons by considering the functioning of the brain and the memory.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]

General Terms
Human Factors.

Keywords
Computer science education, brain-based learning, neurodidactics.

1. INTRODUCTION
Brain-based teaching is not new - and it is no panacea. It is neither
a method nor a concept. It is rather a way of teaching that tries to
support the learning and memory process in all phases from lesson
design over input and practice up to the transfer of knowledge and
competencies in real situations. Proposals for brain-based teaching
come from neurodidactics, an interface between brain and memo-
ry research, didactics, pedagogy and psychology. This research
field confirms learning theories and teaching concepts like con-
structivism [1, 2] or progressive education [3]. This paper presents
some examples of brain-based lesson design and teaching
methods as well as their application in practice.

2. BRAIN-BASED LESSON DESIGN
Summarizing recommendations of neurodidactical research the
following facts shall be kept in mind in lesson planning:
Biological facts that cannot be changed but considered, environ-
mental facts that can be created, personal facts that can be influen-
ced, and brain and memory functions that can be supported [5].
Brain-based lesson design tries to consider as many factors as pos-
sible. Concerning the lesson structure they all approaches have
two important principles in common: Alternating attention levels
have to be considered and learners have to be active.

Sousa [6] e.g. suggests nine components that should be considered
(certainly not all of them fit in all lessons): anticipatory set, lear-
ning objective, purpose, input, modeling, check for understanding,
guided practice, closure and independent practice. Furthermore he
proposes to divide each learning episode in two prime-time phases
of about 20 minutes, one at the beginning containing the most im-
portant information, and one at the end of the lesson for a closure.
The downtime between these phases should be used for practice.
The model of Learning under Self-control follows the phases of
attention and memory, too, and proposes the following structure:

1. Activation phase (about 10 minutes)
2. Core-information phase (about 5-10 minutes)
3. Consolidation phase 1 (about 5 minutes)
4. Repetition phase 1 (about 5 minutes)
5. Consolidation phase 2 (about 10 minutes)
6. Repetition phase 2 (about 10 minutes) [7].

Caine and Caine [2] propose three fundamental lesson phases:
1. Orchestrated immersion (creation of a learning environ-

ment that fully immerses the students);
2. Relaxed alertness (optimal state of learning that com-

bines high challenge and expectations with low threat,
confidence, competence and intrinsic motivation.

3. Active processing and personal engagement of students.

3. BRAIN-BASED TEACHING METHODS
One of the key findings of neurodidactics is that knowledge
cannot be transferred but has to be newly created in the brain of
each student. That means that learning is always an active process
where knowledge has to be constructed. This corresponds to the
approaches of progressive pedagogy and constructivism [1, 3].
The teaching and learning methods proposed in these approaches
contain some neurodidactical principles and they are effective [8].

Discovery Learning: Instead of getting detailed instructions from
a teacher, discovery learning focuses on “[…] teaching things to
oneself, in order to solve one’s own problems." [9].

Social or Observational Learning [10] means learning by imita-
ting and, is based on the so-called mirror neurons that are active
whenever observing and imitating others.

Learning by Doing wants the students to be active, which is more
effective than teacher-centered instruction [6, 11, 12].

Learning by Teaching: “Whoever explains, learns!" [6]. By tea-
ching others learners recall information from memory, which re-
starts the whole memory process and enhances retention [11, 13].

COOL – Cooperative Open Learning: The COOL teaching con-
cept, initiated by a team of Austrian teachers, is based on the Dal-
ton Plan and its key principles freedom of choice,, cooperation
and budgeting time (self-responsibility of the learning process).
During COOL lessons the students work independently on written
assignments. They can decide on when, where, with whom and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
Koli Calling '13, Nov 14-17 2013, Koli, Finland
ACM 978-1-4503-2482-3/13/11.
http://dx.doi.org/10.1145/2526968.2526994

191

how to solve the tasks until a predefined deadline. This requires a
change in the role of teachers, who act as coach or tutor [16].

4. BRAIN-BASED TEACHING PRACTICE
4.1 Brain-based Methods In Creative Projects
One regional part of the Austrian teacher support program IMST1,
“Informatik kreativ unterrichten” (Creative Informatics Teaching)
aims at fostering creativity in computer science education by
funding creative school projects. The majority of these projects
use brain-based teaching methods. One example is described here.

The project “Let’s make the adolescents talk”, which was carried
out in a vocational school for computer scientists, is based on
Learning by teaching. The students had to create short creative
podcasts or webcasts about different topics like algorithms, object
orientation or databases. Besides the aspect that learning by tea-
ching others is very effective the project leader assumed that for
adolescents it might be easier to understand the explanations of
their peers who use the “same” language. During the design and
the production of these “micro learning-modules” the students
were very motivated and active, discussed the topics and tried to
help each other to understand the concepts. With each step in the
project they could also increase their self-esteem, an important
factor in learning [14], because they were proud of their products
[15]. Furthermore, the multimedia learning modules supported the
memory process by taking benefit of the modality effect [16].

4.2 Implementation of a Brain-based Concept
One example of a teaching concept integrating neurodidactical
principles is “Brain-based Programming” [4]. This concept has
been developed in order to improve the learning outcomes of
introductory programming courses at university level and imple-
mented last winter term in one of seven parallel courses (90
minutes/week). It is mainly based on COOL (Cooperative Open
Learning) using the method of pair programming, Discovery
Learning with reading exercises and step-by-step-instructions as
well as Learning by Teaching. Students with good programming
skills (professionals) or some competencies (amateurs) “worked”
as peer tutors and supported there al beginners in small learning
groups during the first two parts in the lessons: the question and
the discovery phase. In the third phase, the lab, all students
worked in pairs and tried to solve different programming
exercises of their choice in the sense of pair programming. In this
way all students were active, always according to their individual
preconditions and competencies [4]. The results of the pilot study
show that considering brain-based principles in teaching
programming can improve learning and that it is worth continuing
and extending this concept.

5. DISCUSSION AND OUTLOOK
Brain-based teaching and learning is not a panacea as some com-
mercial publications may claim, but it can help students in lear-
ning difficult and complex subject matters. Many proposals of
neurodidactics are not new but refer to well-known teaching
concepts like constructivism and progressive education and tea-
ching methods like cooperative and discovery learning or learning
by teaching. But they are scarce and further empirical research is
necessary. The pilot project of “Brain-based Programming”, for
example, could demonstrate that a neurodidactical approach on
different levels (lesson structure, classroom setting, teaching
methods and material) can be successful. In a follow-up project
that is being planned now we want to test the adapted concept in

1IMST = Innovations Make Schools Top

schools and have a closer look at specific aspects like the use of
pattern recognition in classroom or the impact of cooperative
methods from the point of view of neurodidactics. Future research
should also study the effectiveness of different brain-based
methods.

6. REFERENCES
[1] Gülpinar, M. A. 2005. The Principles of Brain-Based Lear-

ning and Constructivist Models in Education. Educational
Sciences: Theory & Practice 5 (2), Nov. 2005, 299-306.

[2] Caine, G. and Caine, R. 2007. Natural learning: The basis
for raising and sustaining high standards of real world per-
formance. Position Paper: Natural Learning Research Insti-
tute. Retrieved on 19/07/2013 from: http://www.seeing
learning.com/wp-content/uploads/2013/05/Position.pdf.

[3] Bruer, J. T. 2007. In search of... brain-based education. In
The Jossey-Bass Reader on the Brain and Learning, K. W.
Fischer, M. H. Immordino-Yang, Ed. John Wiley & Sons.

[4] Sabitzer, B., Strutzmann, S. 2013, in press. Brain-based
Programming. In Proceedings of IEEE Frontiers in
Education, October 2013, Oklahoma City, Oklahoma, US.

[5] Sabitzer, B.and Antonitsch, P. 2012. Of Bytes and Brain. –
Informatics Meets Neurodidactics. In INTED 2012 Procee-
dings, Gómez Chova, Candel Torres, López Martìnez, (Eds.)
IATED, pp. 2003-2012, Barcelona.

[6] Sousa, D. A. 2006. How The Brain Learns. Third edition.
Corwin Press, Thousand Oaks, California.

[7] Theurl, P. 2009 “Lernen unter Selbstkontrolle” – Entspan-
nung und Kontemplation in Schule und Unterricht. In Neuro-
didaktik: Grundlagen und Vorschläge für gehirngerechtes
Lehren und Lernen, Second edition, U. Herrmann, Ed. Beltz
Verlag, Weinheim und Basel, Germany.

[8] Hattie, J. 2009. Visible Learning: A Synthesis of Over 800
Meta-Analyses Relating to Achievement. Taylor & Francis,
London, New York.

[9] Baldwin, D. 1996. Discovery learning in computer science.
In Proceedings of the twenty-seventh SIGCSE technical
symposium on Computer science education. ACM, New
York, pp. 222 - 226.

[10] Bandura, A. 1976. Lernen am Modell. Klett, Stuttgart.

[11] Elsenbaumer, S. 2013. Neurodidactics in Practice. A Practi-
cal Approach to Introducing Informatics into a Primary
School in a Brain-based Way. Unpublished Diploma Thesis,
Alpen-Adria-Universität Klagenfurt.

[12] DuFour, R., DuFour, R., Eaker, R. and Many, T. 2006.
Learning by Doing. A handbook for professional learning
communities at work. Solution Tree, USA.

[13] Grzega, J. (n.d.). Lernen duch Lehren. Retrieved May 26,
2013, from http://www.ldl.de/.

[14] Geake, J. G. 2009. The brain at school: Educational neuro-
science in the classroom. Open University Press, Berkshire,
New York.

[15] Kölblinger, I. 2013. Lassen wir die Jugend sprechen (Let’s
make the adolescents talk).Unpublished project report.

[16] Sabitzer, B., Pasterk, S. and Elsenbaumer, S. 2013.
Informatics is COOL – Cooperative and COmputer-assisted
Open Learning. Submitted to WIPSCE Conference,
November 2013, Aarhu.

192

Computational Thinking in CS Teaching Materials:
a pilot study

Erik Barendsen
Radboud University Nijmegen

ICIS, PO Box 9010, 6500 GL Nijmegen
The Netherlands

e.barendsen@cs.ru.nl

Idzard Stoker
Radboud University Nijmegen

ICIS, PO Box 9010, 6500 GL Nijmegen
The Netherlands

i.stoker@student.ru.nl

ABSTRACT
This poster reports on research in progress. We develop a
coding scheme to analyze teaching materials with respect to
Computational Thinking (CT) content. In this pilot study,
we apply the coding scheme to a sample of Dutch materi-
als for Computing Science. The framework turns out to be
useful for both global and in-depth analysis of CT content.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Literacy

General Terms
Human Factors, Algorithms

Keywords
Computational thinking, computing education

1. INTRODUCTION
It has been widely recognized that digital literacy is im-

portant in our present day information society. The term
Computational Thinking (CT), coined by J. M. Wing [6],
refers to a set of analytical skills needed to apply comput-
ers in an effective way. According to Wing, CT consists
of a number of mental processes and tools originating from
computer science, such as recognizing algorithmic and data
aspects in a problem. CT can be regarded as ‘CS in context’.

Several operational definitions of CT have been suggested,
notably by the Computational Thinking Task Force of CSTA
[2]. In addition, CSTA proposes a ‘vocabulary’ of basic CT
subjects (data collection, data analysis, data representation,
problem decomposition, abstraction, algorithms & proce-
dures, automation, simulation and parallelization), together
with a suggested development throughout the K-12 grades
and examples of so-called CT Learning Experiences.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
Koli Calling ’13, November 14–17 2013, Koli, Finland
ACM 978-1-4503-2482-3/13/11.
http://dx.doi.org/10.1145/2526968.2526995

The study reported in this paper is part of a bigger design
research project on Computational Thinking in Dutch sec-
ondary education, aiming at development of teaching mate-
rials, assessments and instruction strategies suitable for the
Dutch context. In the first phase of the project we analyze
the current state of affairs of CT in Dutch CS education.
This phase includes an analysis of teaching materials and
teachers’ pedagogical content knowledge (PCK, [5, 4]).

This study focuses on the teaching materials. We expect
to find aspects of CT in CS text books, albeit probably not in
a coherent way, as CT was usally not explicitly intended as a
learning outcome at the time of writing. We take the CSTA
operationalization as a starting point. We intend to refine
the categories to allow for a deeper analysis and comparison
of teaching materials. The refinement will also be used to
conduct PCK interviews with teachers at a later stage.

Our research questions are as follows. (1) How can the CT
content of teaching materials be characterized? (2) Which
aspects of CT are present in the materials used in Dutch
CS education? (3) Which variation with respect to content
matter can be recognized in the CT parts of the materials?

We carried out an exploratory study on a set of mod-
ules taken from established Dutch CS text books: Algo-
rithms and programs, Programming languages, Relational
databases, Information modelling, Organization and projects.
We also analyzed a new module Model checking and a mod-
ule on programming for first-year general science students.
The latter was included because it was constructed as a se-
ries of tasks with a context-based approach [3, 1] in mind.

2. METHOD

2.1 Development of the coding scheme
The list of nine CT categories of CSTA was extended to

a coding scheme in two steps. In the first step we analyzed
the examples in the CT Learning Experiences of [2]. We at-
tached short descriptions describing the CT content in more
detail. When all learning experiences were characterized,
we reduced the short descriptions within each category to
a limited number of subcategories. In the second step, we
used the refined coding scheme to code a sample of module
fragments. The codes were checked for completeness (are all
CT elements covered?) and mutual exclusion (is there any
overlap?). Where necessary, subcategories were added.

2.2 Analysis of the teaching materials
The resulting coding scheme was used to analyze the mod-

ules. We coded the texts, assigning subcategories to relevant

193

text fragments. We determined the relative frequencies of
categories and subcategories in our sample. Then we per-
formed a more in-depth qualitative analysis, determining the
variation within each (sub)category.

3. RESULTS

3.1 Coding scheme
In the first step, we found 7 fragments in the category Ab-

straction, 8 in Algorithms & Procedures, 6 in Automation, 5
in Data Analysis, 4 in Data Collection, 3 in Data Repre-
sentation, 1 in Parallelization, 2 in Problem decomposition,
and 7 in Simulation. After reduction of the descriptions, we
obtained the subcategories in Table 1. The subcategories
displayed in italics were discovered in the second step, in
which we used the intermediate coding scheme to code 5
fragments of the modules.

category subcategories
Data Collection Collecting data

Selecting relevant data
Data Analysis Drawing conclusions

Finding patterns
Making sense of data

Data Representation Arrange data for analysis
Organize/represent data

Problem
Decomposition

Breaking down tasks
Merging subtasks

Abstraction Finding characteristics
Creating models

Algorithms &
Procedures

Making sequential steps in a
specific order
Understanding and changing
algorithms
Making decisions in algorithms
Implementing algorithms

Automation Recognizing different forms of
automation
Recognizing the advantages of
automation

Simulation Creating pseudo-code
Creating models of processes
Experimenting

Parallelization Combine/merge activities

Table 1: Coding scheme

3.2 Analysis of teaching materials
The modules turned out to be quite complementary with

respect to CT content. This is not surprising since each
module focuses on a specific CS subject, and only touches
upon the CT aspects directly related to that subject. We
give some examples of the quantitative results.

Remarkably many codes have been assigned to Program-
ming for Science: 111 of 234 codes, almost 50%. This con-
trasts the size of the module: Programming for Science has
20250 words, whereas the textbook modules together have
43056, more than twice as many. Thus, the density of codes
in Programming for Science is much higher than that of the
textbook modules.

We also see that Programming for Science has the high-
est coding score on Algorithms & Procedures. The module

Algorithms and programs was also assigned relatively many
codes in this category. Both modules focus on program-
ming. It is remarkable that no codes in this category were
assigned to Programming languages, although this module
also concerns programming. Table 2 shows the occurrences
of subcategories in the two modules. It appears that the
CT-contents of the modules are highly complementary.

subcategory A&P PfS
Implementing algorithms 0 23
Making decisions in algorithms 0 2
Making sequential steps in a specific order 17 6
Understanding and changing algorithms 1 38

Table 2: Subcategories of Algorithms & Procedures
compared

A full paper will elaborate on the findings of the in-depth
qualitative analysis.

4. FUTURE WORK
We intend to further document the coding scheme and

examine the inter-coder reliability of the instrument. More-
over, we plan to analyze more (international) texts using the
resulting scheme.

One could imagine that the coding method can be turned
into an instrument to be used not only in a descriptive way
(to analyze CT content), but also in a more normative way
(assessing CT content of new materials).

The module Programming for Science shows a remarkably
high density of CT content. A plausible explanation is the
explicit context-based approach. We are planning to pursue
this direction in future research, making use of the insights
about context-based eduction obtained in the science edu-
cation community.

5. REFERENCES
[1] J. Bennett and J. Holman. Context-based approaches

to the teaching of chemistry: What are they and what
are their effects? In J. K. Gilbert, O. De Jong, R. Justi,
D. F. Treagust, and J. H. Van Driel, editors, Chemical
education: Towards research-based practice, pages
165–184. Dordrecht: Kluwer, 2002.

[2] CSTA. Computational thinking teacher resources,
second edition, 2011. Retrieved from http:

//csta.acm.org/Curriculum/sub/CompThinking.html,
July 2013.

[3] J. K. Gilbert. On the nature of ‘context’ in chemical
education. International Journal of Science Education,
28(9):957–976, 2006.

[4] S. Magnusson, J. Krajcik, and H. Borko. Nature,
sources, and development of pedagogical content
knowledge for science teaching. In J. Gess-Newsome
and N. G. Lederman, editors, Examining pedagogical
content knowledge, pages 95–132. Dordrecht: Kluwer,
1999.

[5] L. S. Shulman. Those who understand: Knowledge
growth in teaching. Educational researcher, 15(2):4–14,
1986.

[6] J. M. Wing. Computational thinking. Communications
of the ACM, 49(3):33–35, 2006.

194

http://csta.acm.org/Curriculum/sub/CompThinking.html
http://csta.acm.org/Curriculum/sub/CompThinking.html

Why is Big-O Analysis Hard?
Miranda Parker, Colleen Lewis

Harvey Mudd College
301 Platt Blvd

Claremont, CA, USA 91711

mparker, lewis@cs.hmc.edu

ABSTRACT

We are interested in increasing comprehension of how students

understand big-O analysis. We conducted a qualitative analysis of

interviews with two undergraduate students to identify sources of

difficulty within the topic of big-O. This demonstrates the

existence of various difficulties, which contribute to the sparse

research on students’ understanding of pedagogy. The students

involved in the study have only minimal experience with big-O

analysis, discussed within the first two introductory computer

science courses. During these hour-long interviews, the students

were asked to analyze code or a paragraph to find the runtime of

the algorithm involved and invited students to write code that

would in run a certain runtime. From these interactions, we

conclude that students that have difficulties with big-O could be

having trouble with the mathematical function used in the analysis

and/or the techniques they used to solve the problem.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information

Science Education—computer science education

General Terms
Human Factors

Keywords
Big-O, runtime analysis, algorithmic complexity

1. I"TRODUCTIO"

Big-O is used in computer science to estimate the upper-bound of

an algorithm’s runtime [2]. We assume that big-O is important to

students’ ability to write efficient code. However, from our

experience, students appear to have a fair share of difficulty with

this subject. Big-O has been shown to be the most difficult topic

for college students at the introductory programming level [3].

 However, it’s also seen as the least relevant topic at this level,

and thus does not get all of the attention it deserves in terms of

understanding why it is difficult [3].

We created an interview protocol designed to investigate students’

understanding of big-O analysis. During the interview the

students were asked to analyze code or a textual description to

find the runtime of the algorithm involved. We also invited

students to write code that would operate in a certain runtime.

 Afterwards their answers and actions were qualitatively analyzed

in order to gain insight into their understanding of big-O.

2. A"ALYSIS

In the analysis we focus on portions of an explanation Ethan (a

pseudonym) gave for why he feels he does not understand big-O

analysis. This was during the second attempt of a problem that

asked him to write a function that runs in O(log(n)) time. He

initially passed on the problem, but since we had extra time during

the interview he chose to reconsider it. He worked towards a

solution to the problem while he was mentioning what parts of

big-O were hard for him.

From this discussion, we develop the idea that difficulty with big-

O derives from two sections of understanding: the mathematical

function in the analysis and the technique used to solve the

analysis, be in plug-and-chug or reductive thinking [1].

2.1 Episode One

2.1.1 Data
01 Logs, they’re always involving logs.

02 Logs are like the least friendly thing.

03 Like, with you know n squared I could easily point to life

and

04 say that’s an example of something being squared, but

05 a log is really less tangible, you know?

06 like, and even like trig functions, like sine, cosine, tangent,

you can say

07 ‘Oh, triangles.’

08 Like uh I don’t know log and uh

09 also I think part of it is just me.

2.1.2 Analysis
From the transcript presented above, it can be concluded that

Ethan can have different levels of difficulty with different

mathematical functions. This can be deduced from his

differentiation in difficulty between squares and logs. He sees

logs as “the least friendly thing” and “less tangible.” This helps to

provide context for why Ethan initially did not answer the

logarithmic runtime problem, since he could tell from the problem

statement what mathematical function it involved and he knew

that he did not completely understand that function.

2.2 Episode Two

2.2.1 Data
01 Um at least it helps me

02 when I put the number six in there and

03 see, actually sort of count it and

04 reason it in my head with a tangible number and

05 then put it in variable form.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other

uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

Koli Calling’13, November 14-17, 2013, Koli, Finland.

http://dx.doi.org/10.1145/2526968.2526996

ACM 978-1-4503-2482-3/13/11.

195

2.2.2 Analysis
Ethan’s plug-and-chug technique for solving the problem may

lead to difficulties in understanding the problem. He feels a sense

of comfort, expressed in line one of this episode, with using this

technique. He likes it because it uses “a tangible number.” This

is connected to the idea of having difficulties with mathematical

functions. This is because plugging a number into a coded

function can be more or less helpful in the big-O analysis

depending on the mathematical function. For example, it may be

easier to notice a number being squared than a number that has the

log taken of it. However, just because a student understands a

mathematical function does not imply that the student also has a

valid and dependable technique for solving for the runtime. In

other words, even if Ethan understood logarithms, his chosen

technique for solving a problem might still give him difficulties

with the runtime analysis.

2.3 Episode Three

2.3.1 Data
01 I know loops and recursion and stuff has n attached to

them, but

02 I don’t know how to mix and match them, and

03 I don’t know what corresponds with what and

04 what logs correspond to.

05 I know there’s some type of correspondence between a

type of programming thing and logs, or whatever.

2.3.2 Analysis
Ethan desires a connection between the abstract (big-O analysis)

and the concrete (algorithms, structures, etc.). He recognizes that

certain programming structures or algorithms have certain

runtimes, expressed in line one of this episode. However, he does

not know all of these correspondences, and admits as much for

logs in line four. A student could plausibly understand logarithms

in a math context but not relate logarithms to inherently binary

structures in a computer science context.

2.4 Analysis Summary
Ethan’s interview led us to hypothesize about two possible areas

that students could have difficulty in when learning big-O

analysis. We are led to this conclusion through Ethan’s

discussions of tangibleness (leading to the plug-and-chug

technique) and correspondence (the reductive thinking technique),

which point to key parts of big-O analysis that, if misunderstood,

could increase the difficulty of runtime analysis from the student’s

perspective. Ethan’s dislike of logarithms carried through all of

these areas, but that does not imply that the mathematical function

and the solution technique are one and the same in terms of

difficulty. The mathematical function interacts with the solution

technique, including plug-and-chug and reductive thinking

techniques, to create difficulty with big-O analysis, as seen in

Figure 1.

3. CO"CLUSIO"
From the analysis, we conjecture that two things work together to

affect a student’s understanding of big-O analysis: the

mathematical function used in the big-O analysis and the

technique the student uses to find the solution to the problem, be it

plug-and-chug or reductive thinking [1].

In terms of the mathematical function, students seemed to have

different experiences in solving a big-O analysis problem

depending on what mathematical function was involved, such as

log(n) or n2. This was most evident when the student was asked

to write a function that ran with a certain big-O runtime.

Additionally, there were various techniques the student used to

find a big-O runtime, some of which produced more correct

answers for a student than others. In some cases, students would

plug values into the algorithm and then try to extrapolate the

runtime from the number of steps the algorithm took to produce

the return value. In other cases, students had an easier time with a

problem when they could determine a pattern in the algorithm that

they seen before, such as a certain set of recursive calls, and

associate it with a certain runtime.

The data suggests that the mathematical function and the

technique used in solving the problem are connected, since the

technique that a student uses may produce a wrong answer

depending on the mathematical function that is involved. For

example, some students found it much easier to detect a

polynomial pattern than a logarithmic pattern.

This study takes the first step towards understanding how students

reason about big-O. Although only a few examples are provided,

these examples of why big-O is difficult can still make a

difference in the pedagogy of this topic. Furthermore, this

research can easily be expanded to explore more areas of big-O

with which students struggle.

4. REFERE"CES
[1] Armoni, M., Gal-Ezer, J. and Hazzan, O. 2006. Reductive

Thinking in Undergraduate CS Courses. In Proceedings of

the 11th annual SIGCSE conference on Innovation and

technology in computer science education (ITICSE '06).

ACM, New York, NY, USA, 133-137.

DOI=10.1145/1140124.1140161

[2] Dasgupta, S., Papadimitriou, C.H. and Vazirani, U.V. 2006.
Algorithms. McGraw-Hill.

[3] Schulte, C., and Bennedsen, J. What Do Teachers Teach in
Introductory Programming? 2006. In Proceedings of the

second international workshop on Computing education

research (ICER '06). ACM, New York, NY, USA, 17-28.

DOI=10.1145/1151588.1151593

196

An open approach for learning educational data mining
Ilkka Jormanainen
School of Computing

University of Eastern Finland
P.O.BOX 111

FI-80101 Joensuu, Finland
ilkka.jormanainen@uef.fi

 Erkki Sutinen
School of Computing

University of Eastern Finland
P.O.BOX 111

FI-80101 Joensuu, Finland
erkki.sutinen@uef.fi

ABSTRACT
The Open Monitoring Environment (OME) allows a teacher to
monitor, model and, thus, understand, the learning process based
on the real data rising from an educational robotics class. The
OME uses a novel educational data mining approach where
teachers are empowered to create rules to extract pedagogically
and contextually meaningful patterns of actions from a raw data
flow. The OME has been tested in various educational robotics
settings and our results indicate that the data mining approach in
the OME is easily accessible even for users who are not computer
science experts. We propose that the OME could be utilized in
computer science education as a platform for empirical, hands-on
approach for teaching and learning educational data mining.

Categories and Subject Descriptors
K.3.2 [Computers and Education] Computer and Information
Science Education – computer science education, information
systems education.

General Terms
Design, Experimentation, Human Factors.

Keywords
Educational data mining, robotics, learning analytics

1. INTRODUCTION
Educational data mining and learning analytics have recently
become important trends in educational technology research and
industry. It is evident that one of the catalysts that create a need
for analyzing learning data deeply is the changing role of modern
technology in regular classrooms. Technology-enhanced learning
environments, such as educational robotics or tablet-based
learning tools, often emphasize project-based working methods,
and learning processes in such settings generate vast amounts of
logging data. There is a need to have tools to explore data, and
more importantly to understand reasons behind phenomena in the
classroom. As a result of our recent research on analyzing
learning data rising from educational robotics classrooms, we
have developed an Open Monitoring Environment (OME) that
automatically gathers data from the learning setting and empowers
a teacher to processes this data to collections and visualizations

that are relevant for the current learning context. The OME is
driven by an open data mining process in its core, and all steps of
the data mining are accessible and under control of a teacher using
the system. Taking into account the positive results from our
previous research with the OME, we propose in this paper a
hands-on approach for learning and teaching basics of educational
data mining with the OME.

2. BACKGROUND
Data mining tools have a recognized status as a part of modern
learning environments. Most of the work in data mining in
educational systems contributes to student assessment and course
adaptation (for example [2] and [3]). Clustering and classification
are mostly used data mining techniques in learning environments
because of the nature of the problems. However, learning
environments where data mining processes and results would be
explicitly visible to the users are rarely reported in the research
literature. Rather than that, the data mining takes place in a black
box. Systems presented in literature are usually based on approach
where a domain expert manually labels data sets and builds
models describing the learning activities in advance. This is a
time-consuming and error prone process especially in exploratory
learning environments with open-ended problems, because prior
definitions of relevant behaviors are necessarily not available for
labeling data and training the model [1], and a substantial amount
of data may be required to build a model. We have shown in our
previous research that the OME produces valuable insight into the
progress of the learning activity even on relatively small datasets
[4].

3. OPEN MONITORING ENVIRONMENT
The core idea of the OME (Figure 1) is to help the teacher to
detect the right moments for intervention in a robotics class. In
this way, the OME potentially helps the teacher to build his or her
intervention strategies. The OME features an open data mining
approach, which automates data collection and preprocessing and
allows the teacher to combine data streams from the robotics
classroom with his or her own observations arising from the
learning process. The OME provides tools for classifying events
(essentially, creating training set), and creating a classifier and
evaluating the outcome. In this way, the environment encourages
the teacher to model the learning process in the way that best suits
his or her preferences and the current learning setting. We have
shown that the open data mining approach of the OME works in
educational robotics context [5]. There are also indications that
the OME approach is suitable for analyzing data from other
learning settings, such as tablet-based science teaching. We
believe that the open data mining supports any kind of learning
setting as long as suitable logging data is available and
pedagogically meaningful connections can be made between data
and events in the classroom.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
Koli Calling '13, Nov 14-17 2013, Koli, Finland
ACM 978-1-4503-2482-3/13/11.
http://dx.doi.org/10.1145/2526968.2526997

197

4. OME IN EDM TEACHING
Educational data mining (EDM) tools provide interesting
possibilities for more in-depth exploration of learning processes.
The tools used to teach basics of EDM should be powerful but at
the same time easy enough to learn and operate. The students
necessarily do not have skills to modify the functionality of the
tools. In many cases, the tools provide mainly pre-defined set of
rules and models [5] and modifications are impossible to apply
without a complicated and time-costly process. Empirical
approach of the OME and hands-on experiments with real data
sets in learning environments help the students to gain
understanding about causations that follow their choices in
different parts of the data mining process. Based on the positive
results of previous research [5], we envisage that the OME
principles could be applied also when teaching basics of
educational data mining and learning analytics. The OME uses the
following identifiable steps in the data mining process.

1. Collecting data from the learning process
2. Preprocessing the data
3. Classifying the data into a training set
4. Creating a classifier with the training set
5. Judging students’ progress against the created classifiers

The steps are rather general, and they can be found in many data
mining driven learning environments. By following these steps,
the OME provides a simple and straightforward way to learn the
basic educational data mining concepts with simple classification
schemes, such as J48 descision tree or BFTree.
The small data sets in the OEM make possible to iterate the steps
many times during a learning session and the users have an
immediate view how their choices with classification affect to the
outcome of the data mining algorithm. The OME also provides
functionalities for “replaying” previously collected and saved
data. This feature was built for analyzing learning data
subsequently. This approach could be utilized if real-time learning
settings, such as educational robotics classes, would not be
available. The OME is not fixed to work in educational robotics
classes only, but any technology-based learning environment that

produces suitable data about students’ activities can be used. The
open nature of the OME ensures that it can be easily to modified
and deployed in different contexts.

5. CONCLUSION
We have presented the Open Monitoring Environment that allows
a teacher working in a technology-based learning environment to
adopt roles of software developer or domain expert in his or her
work. In this way, the OME essentially mixes teaching and
development activities together and allows a flexible and highly
contextualized learning environment for observing students’
activities. The fundamental steps of an educational data mining
processes can be found in the OME. We propose that the OME
could be utilized not only as a tool for helping teachers in robotics
classes, but also as a learning environment for educational data
mining courses when learning and teaching how to use simple
classifying schemes. The simplicity of the environment and rapid
iterations of the OME could bring added value for educational
data mining teaching.

6. REFERENCES
[1] Amershi, S., and Conati, C. 2009. Combining Unsupervised

and Supervised Classification to Build User Models for
Exploratory Learning Environments. Journal of Educational
Data Mining 1, 18–71.

[2] Gobert, J., Sao Pedro, M., Baker, R., Toto, E., and Montalvo,
O. 2012. Leveraging Educational Data Mining for Real-time
Performance Assessment of Scientific Inquiry Skills within
Microworlds. Journal of Educational Data Mining 4, 111–
143.

[3] Kristofic A., and Bieliková, M. 2005. Improving adaptation
in web- based educational hypermedia by means of
knowledge discovery. Proceedings of the sixteenth ACM
conference on Hypertext and hypermedia, HYPERTEXT ’05,
184–192.

[4] Jormanainen, I., and Sutinen, E. 2013. Role blending in a
learning environment supports facilitation in a robotics class.
Journal of Educational Technology & Society, to appear.

Figure 1. Components of the Open Monitoring Environment (modified from [4]).

Decision tree
parser

Weka
data mining tool

(J48 decision tree)

Training set

Tree description

OME database

Teacher

Open Monitoring Environment (OME)

Intervention
Facilitation

Visualisation

Data Data in time slots

Creation

Interpretation

Rules

Interpretation
Modifications

Learning
process

198

	KoliCalling2013Frontmatter
	p001-lattu
	p003-busjahn
	p013-helminen
	p023-simon
	p033-kasurinen
	p043-hakulinen
	p059-kinnunen
	p077-pamplona
	p087-sekiya
	p097-tedre
	p105-vivian
	p125-vivian
	p135-klomsri
	p145-munezero
	p153-sampaio
	p161-kleiner
	p169-knutas
	p179-silva
	p189-sirkia
	p191-shi
	p193-friese
	p195-antonitsch
	p197-sabitzer
	p201-parker
	p203-jormanainen

